no_std_net

Struct Ipv6Addr

Source
pub struct Ipv6Addr { /* private fields */ }
Expand description

An IPv6 address.

IPv6 addresses are defined as 128-bit integers in IETF RFC 4291. They are usually represented as eight 16-bit segments.

See IpAddr for a type encompassing both IPv4 and IPv6 addresses.

§Textual representation

Ipv6Addr provides a FromStr implementation. There are many ways to represent an IPv6 address in text, but in general, each segments is written in hexadecimal notation, and segments are separated by :. For more information, see IETF RFC 5952.

§Examples

use no_std_net::Ipv6Addr;

let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
assert_eq!("::1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);

Implementations§

Source§

impl Ipv6Addr

Source

pub const LOCALHOST: Self

An IPv6 address representing localhost: ::1.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::LOCALHOST;
assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
Source

pub const UNSPECIFIED: Self

An IPv6 address representing the unspecified address: ::

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::UNSPECIFIED;
assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
Source

pub const fn new( a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16, ) -> Ipv6Addr

Creates a new IPv6 address from eight 16-bit segments.

The result will represent the IP address a:b:c:d:e:f:g:h.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
Source

pub const fn segments(&self) -> [u16; 8]

Returns the eight 16-bit segments that make up this address.

§Examples
use no_std_net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
           [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
Source

pub const fn is_unspecified(&self) -> bool

Returns true for the special ‘unspecified’ address (::).

This property is defined in IETF RFC 4291.

§Examples
use no_std_net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
Source

pub const fn is_loopback(&self) -> bool

Returns true if this is a loopback address (::1).

This property is defined in IETF RFC 4291.

§Examples
use no_std_net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
Source

pub const fn is_multicast(&self) -> bool

Returns true if this is a multicast address (ff00::/8).

This property is defined by IETF RFC 4291.

§Examples
use no_std_net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
Source

pub const fn to_ipv4(&self) -> Option<Ipv4Addr>

Converts this address to an IPv4 address. Returns None if this address is neither IPv4-compatible or IPv4-mapped.

::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d

§Examples
use no_std_net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
           Some(Ipv4Addr::new(192, 10, 2, 255)));
assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
           Some(Ipv4Addr::new(0, 0, 0, 1)));
Source

pub const fn octets(&self) -> [u8; 16]

Returns the sixteen eight-bit integers the IPv6 address consists of.

use no_std_net::Ipv6Addr;

assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
           [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);

Trait Implementations§

Source§

impl Clone for Ipv6Addr

Source§

fn clone(&self) -> Ipv6Addr

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Ipv6Addr

Source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Display for Ipv6Addr

Write an Ipv6Addr, conforming to the canonical style described by RFC 5952.

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl From<[u16; 8]> for Ipv6Addr

Source§

fn from(segments: [u16; 8]) -> Ipv6Addr

Creates an Ipv6Addr from an eight element 16-bit array.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::from([
    525u16, 524u16, 523u16, 522u16,
    521u16, 520u16, 519u16, 518u16,
]);
assert_eq!(
    Ipv6Addr::new(
        0x20d, 0x20c,
        0x20b, 0x20a,
        0x209, 0x208,
        0x207, 0x206
    ),
    addr
);
Source§

impl From<[u8; 16]> for Ipv6Addr

Source§

fn from(octets: [u8; 16]) -> Ipv6Addr

Creates an Ipv6Addr from a sixteen element byte array.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::from([
    25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
    17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
]);
assert_eq!(
    Ipv6Addr::new(
        0x1918, 0x1716,
        0x1514, 0x1312,
        0x1110, 0x0f0e,
        0x0d0c, 0x0b0a
    ),
    addr
);
Source§

impl From<Ipv6Addr> for IpAddr

Source§

fn from(ipv6: Ipv6Addr) -> IpAddr

Copies this address to a new IpAddr::V6.

§Examples
use no_std_net::{IpAddr, Ipv6Addr};

let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);

assert_eq!(
    IpAddr::V6(addr),
    IpAddr::from(addr)
);
Source§

impl From<Ipv6Addr> for u128

Source§

fn from(ip: Ipv6Addr) -> u128

Convert an Ipv6Addr into a host byte order u128.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::new(
    0x1020, 0x3040, 0x5060, 0x7080,
    0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
);
assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
Source§

impl From<u128> for Ipv6Addr

Source§

fn from(ip: u128) -> Ipv6Addr

Convert a host byte order u128 into an Ipv6Addr.

§Examples
use no_std_net::Ipv6Addr;

let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
assert_eq!(
    Ipv6Addr::new(
        0x1020, 0x3040, 0x5060, 0x7080,
        0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
    ),
    addr);
Source§

impl FromStr for Ipv6Addr

Source§

type Err = AddrParseError

The associated error which can be returned from parsing.
Source§

fn from_str(s: &str) -> Result<Ipv6Addr, AddrParseError>

Parses a string s to return a value of this type. Read more
Source§

impl Hash for Ipv6Addr

Source§

fn hash<H: Hasher>(&self, s: &mut H)

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl Ord for Ipv6Addr

Source§

fn cmp(&self, other: &Ipv6Addr) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl PartialEq<IpAddr> for Ipv6Addr

Source§

fn eq(&self, other: &IpAddr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq<Ipv6Addr> for IpAddr

Source§

fn eq(&self, other: &Ipv6Addr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialEq for Ipv6Addr

Source§

fn eq(&self, other: &Ipv6Addr) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl PartialOrd<IpAddr> for Ipv6Addr

Source§

fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd<Ipv6Addr> for IpAddr

Source§

fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl PartialOrd for Ipv6Addr

Source§

fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl Copy for Ipv6Addr

Source§

impl Eq for Ipv6Addr

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 16 bytes