minicbor/decode/
decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
#![allow(clippy::unusual_byte_groupings)]

use crate::{ARRAY, BREAK, BYTES, MAP, SIMPLE, TAGGED, TEXT, SIGNED, UNSIGNED};
use crate::data::{Int, Tag, Type};
use crate::decode::{Decode, Error};
use core::{char, f32, i8, i16, i32, i64};
use core::{marker, str};

/// A non-allocating CBOR decoder.
#[derive(Debug, Clone)]
pub struct Decoder<'b> {
    buf: &'b [u8],
    pos: usize
}

impl<'b> Decoder<'b> {
    /// Construct a `Decoder` for the given byte slice.
    pub fn new(bytes: &'b [u8]) -> Self {
        Decoder { buf: bytes, pos: 0 }
    }

    /// Decode any type that implements [`Decode`].
    pub fn decode<T: Decode<'b, ()>>(&mut self) -> Result<T, Error> {
        T::decode(self, &mut ())
    }

    /// Decode any type that implements [`Decode`].
    pub fn decode_with<C, T: Decode<'b, C>>(&mut self, ctx: &mut C) -> Result<T, Error> {
        T::decode(self, ctx)
    }

    /// Get the current decode position.
    pub fn position(&self) -> usize {
        self.pos
    }

    /// Set the current decode position.
    pub fn set_position(&mut self, pos: usize) {
        self.pos = pos
    }

    /// Get a reference to the input bytes.
    pub fn input(&self) -> &'b [u8] {
        self.buf
    }

    /// Get a decoding probe to look ahead what is coming next.
    ///
    /// This will not affect the decoding state of `self` and after the
    /// returned `Probe` has been dropped, decoding can continue from
    /// its current position as if `probe` was never called.
    pub fn probe<'a>(&'a mut self) -> Probe<'a, 'b> {
        Probe {
            decoder: self.clone(),
            _marker: marker::PhantomData
        }
    }

    /// Decode a `bool` value.
    pub fn bool(&mut self) -> Result<bool, Error> {
        let p = self.pos;
        match self.read()? {
            0xf4 => Ok(false),
            0xf5 => Ok(true),
            b    => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected bool"))
        }
    }

    /// Decode a `u8` value.
    pub fn u8(&mut self) -> Result<u8, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0 ..= 0x17 => Ok(n),
            0x18           => self.read(),
            0x19           => self.read_array().map(u16::from_be_bytes).and_then(|n| try_as(n, "when converting u16 to u8", p)),
            0x1a           => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to u8", p)),
            0x1b           => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to u8", p)),
            b              => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected u8"))
        }
    }

    /// Decode a `u16` value.
    pub fn u16(&mut self) -> Result<u16, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0 ..= 0x17 => Ok(u16::from(n)),
            0x18           => self.read().map(u16::from),
            0x19           => self.read_array().map(u16::from_be_bytes),
            0x1a           => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to u16", p)),
            0x1b           => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to u16", p)),
            b              => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected u16"))
        }
    }

    /// Decode a `u32` value.
    pub fn u32(&mut self) -> Result<u32, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0 ..= 0x17 => Ok(u32::from(n)),
            0x18           => self.read().map(u32::from),
            0x19           => self.read_array().map(u16::from_be_bytes).map(u32::from),
            0x1a           => self.read_array().map(u32::from_be_bytes),
            0x1b           => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to u32", p)),
            b              => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected u32"))
        }
    }

    /// Decode a `u64` value.
    pub fn u64(&mut self) -> Result<u64, Error> {
        let p = self.pos;
        let n = self.read()?;
        self.unsigned(n, p)
    }

    /// Decode an `i8` value.
    pub fn i8(&mut self) -> Result<i8, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0x00 ..= 0x17 => Ok(n as i8),
            0x18              => self.read().and_then(|n| try_as(n, "when converting u8 to i8", p)),
            0x19              => self.read_array().map(u16::from_be_bytes).and_then(|n| try_as(n, "when converting u16 to i8", p)),
            0x1a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i8", p)),
            0x1b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i8", p)),
            n @ 0x20 ..= 0x37 => Ok(-1 - (n - 0x20) as i8),
            0x38              => self.read().and_then(|n| try_as(n, "when converting u8 to i8", p).map(|n: i8| -1 - n)),
            0x39              => self.read_array().map(u16::from_be_bytes).and_then(|n| try_as(n, "when converting u16 to i8", p).map(|n: i8| -1 - n)),
            0x3a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i8", p).map(|n: i8| -1 - n)),
            0x3b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i8", p).map(|n: i8| -1 - n)),
            b                 => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected i8"))
        }
    }

    /// Decode an `i16` value.
    pub fn i16(&mut self) -> Result<i16, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0x00 ..= 0x17 => Ok(i16::from(n)),
            0x18              => self.read().map(i16::from),
            0x19              => self.read_array().map(u16::from_be_bytes).and_then(|n| try_as(n, "when converting u16 to i16", p)),
            0x1a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i16", p)),
            0x1b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i16", p)),
            n @ 0x20 ..= 0x37 => Ok(-1 - i16::from(n - 0x20)),
            0x38              => self.read().map(|n| -1 - i16::from(n)),
            0x39              => self.read_array().map(u16::from_be_bytes).and_then(|n| try_as(n, "when converting u16 to i16", p).map(|n: i16| -1 - n)),
            0x3a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i16", p).map(|n: i16| -1 - n)),
            0x3b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i16", p).map(|n: i16| -1 - n)),
            b                 => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected i16"))
        }
    }

    /// Decode an `i32` value.
    pub fn i32(&mut self) -> Result<i32, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0x00 ..= 0x17 => Ok(i32::from(n)),
            0x18              => self.read().map(i32::from),
            0x19              => self.read_array().map(u16::from_be_bytes).map(i32::from),
            0x1a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i32", p)),
            0x1b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i32", p)),
            n @ 0x20 ..= 0x37 => Ok(-1 - i32::from(n - 0x20)),
            0x38              => self.read().map(|n| -1 - i32::from(n)),
            0x39              => self.read_array().map(u16::from_be_bytes).map(|n| -1 - i32::from(n)),
            0x3a              => self.read_array().map(u32::from_be_bytes).and_then(|n| try_as(n, "when converting u32 to i32", p).map(|n: i32| -1 - n)),
            0x3b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i32", p).map(|n: i32| -1 - n)),
            b                 => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected i32"))
        }
    }

    /// Decode an `i64` value.
    pub fn i64(&mut self) -> Result<i64, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0x00 ..= 0x17 => Ok(i64::from(n)),
            0x18              => self.read().map(i64::from),
            0x19              => self.read_array().map(u16::from_be_bytes).map(i64::from),
            0x1a              => self.read_array().map(u32::from_be_bytes).map(i64::from),
            0x1b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i64", p)),
            n @ 0x20 ..= 0x37 => Ok(-1 - i64::from(n - 0x20)),
            0x38              => self.read().map(|n| -1 - i64::from(n)),
            0x39              => self.read_array().map(u16::from_be_bytes).map(|n| -1 - i64::from(n)),
            0x3a              => self.read_array().map(u32::from_be_bytes).map(|n| -1 - i64::from(n)),
            0x3b              => self.read_array().map(u64::from_be_bytes).and_then(|n| try_as(n, "when converting u64 to i64", p).map(|n: i64| -1 - n)),
            b                 => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected i64"))
        }
    }

    /// Decode a CBOR integer.
    ///
    /// See [`Int`] for details regarding the value range of CBOR integers.
    pub fn int(&mut self) -> Result<Int, Error> {
        let p = self.pos;
        match self.read()? {
            n @ 0x00 ..= 0x17 => Ok(Int::pos(n)),
            0x18              => self.read().map(Int::pos),
            0x19              => self.read_array().map(u16::from_be_bytes).map(Int::pos),
            0x1a              => self.read_array().map(u32::from_be_bytes).map(Int::pos),
            0x1b              => self.read_array().map(u64::from_be_bytes).map(Int::pos),
            n @ 0x20 ..= 0x37 => Ok(Int::neg(n - 0x20)),
            0x38              => self.read().map(Int::neg),
            0x39              => self.read_array().map(u16::from_be_bytes).map(Int::neg),
            0x3a              => self.read_array().map(u32::from_be_bytes).map(Int::neg),
            0x3b              => self.read_array().map(u64::from_be_bytes).map(Int::neg),
            b                 => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected int"))
        }
    }

    /// Decode a half float (`f16`) and return it in an `f32`.
    ///
    /// Only available when the feature `half` is present.
    #[cfg(feature = "half")]
    pub fn f16(&mut self) -> Result<f32, Error> {
        let p = self.pos;
        let b = self.read()?;
        if 0xf9 != b {
            return Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected f16"))
        }
        Ok(half::f16::from_bits(u16::from_be_bytes(self.read_array()?)).to_f32())
    }

    /// Decode an `f32` value.
    pub fn f32(&mut self) -> Result<f32, Error> {
        let p = self.pos;
        match self.current()? {
            #[cfg(feature = "half")]
            0xf9 => self.f16(),
            0xfa => {
                self.read()?;
                Ok(f32::from_be_bytes(self.read_array()?))
            }
            b => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected f32"))
        }
    }

    /// Decode an `f64` value.
    pub fn f64(&mut self) -> Result<f64, Error> {
        let p = self.pos;
        match self.current()? {
            #[cfg(feature = "half")]
            0xf9 => self.f16().map(f64::from),
            0xfa => self.f32().map(f64::from),
            0xfb => {
                self.read()?;
                Ok(f64::from_be_bytes(self.read_array()?))
            }
            b => Err(Error::type_mismatch(self.type_of(b)?).at(p).with_message("expected f64"))
        }
    }

    /// Decode a `char` value.
    pub fn char(&mut self) -> Result<char, Error> {
        let p = self.pos;
        let n = self.u32()?;
        char::from_u32(n).ok_or_else(|| Error::invalid_char(n).at(p))
    }

    /// Decode a byte slice.
    ///
    /// This only decodes byte slices of definite lengths.
    /// See [`Decoder::bytes_iter`] for indefinite byte slice support.
    pub fn bytes(&mut self) -> Result<&'b [u8], Error> {
        let p = self.pos;
        let b = self.read()?;
        if BYTES != type_of(b) || info_of(b) == 31 {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected bytes (definite length)")
                .at(p))
        }
        let n = u64_to_usize(self.unsigned(info_of(b), p)?, p)?;
        self.read_slice(n)
    }

    /// Iterate over byte slices.
    ///
    /// This supports indefinite byte slices by returing a byte slice on each
    /// iterator step. If a single definite slice is decoded the iterator will
    /// only yield one item.
    pub fn bytes_iter(&mut self) -> Result<BytesIter<'_, 'b>, Error> {
        let p = self.pos;
        let b = self.read()?;
        if BYTES != type_of(b) {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected bytes")
                .at(p))
        }
        match info_of(b) {
            31 => Ok(BytesIter { decoder: self, len: None }),
            n  => {
                let len = u64_to_usize(self.unsigned(n, p)?, p)?;
                Ok(BytesIter { decoder: self, len: Some(len) })
            }
        }
    }

    /// Decode a string slice.
    ///
    /// This only decodes string slices of definite lengths.
    /// See [`Decoder::str_iter`] for indefinite string slice support.
    pub fn str(&mut self) -> Result<&'b str, Error> {
        let p = self.pos;
        let b = self.read()?;
        if TEXT != type_of(b) || info_of(b) == 31 {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected text (definite length)")
                .at(p))
        }
        let n = u64_to_usize(self.unsigned(info_of(b), p)?, p)?;
        let d = self.read_slice(n)?;
        str::from_utf8(d).map_err(|e| Error::utf8(e).at(p))
    }

    /// Iterate over string slices.
    ///
    /// This supports indefinite string slices by returing a string slice on
    /// each iterator step. If a single definite slice is decoded the iterator
    /// will only yield one item.
    pub fn str_iter(&mut self) -> Result<StrIter<'_, 'b>, Error> {
        let p = self.pos;
        let b = self.read()?;
        if TEXT != type_of(b) {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected text")
                .at(p))
        }
        match info_of(b) {
            31 => Ok(StrIter { decoder: self, len: None, pos: p }),
            n  => {
                let len = u64_to_usize(self.unsigned(n, p)?, p)?;
                Ok(StrIter { decoder: self, len: Some(len), pos: p })
            }
        }
    }

    /// Begin decoding an array.
    ///
    /// CBOR arrays are heterogenous collections and may be of indefinite
    /// length. If the length is known it is returned as a `Some`, for
    /// indefinite arrays a `None` is returned.
    pub fn array(&mut self) -> Result<Option<u64>, Error> {
        let p = self.pos;
        let b = self.read()?;
        if ARRAY != type_of(b) {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected array")
                .at(p))
        }
        match info_of(b) {
            31 => Ok(None),
            n  => Ok(Some(self.unsigned(n, p)?))
        }
    }

    /// Iterate over all array elements.
    ///
    /// This supports indefinite and definite length arrays and uses the
    /// [`Decode`] trait to decode each element. Consequently *only
    /// homogenous arrays are supported by this method*.
    pub fn array_iter<T>(&mut self) -> Result<ArrayIter<'_, 'b, T>, Error>
    where
        T: Decode<'b, ()>
    {
        let len = self.array()?;
        Ok(ArrayIter { decoder: self, len, _mark: marker::PhantomData })
    }

    /// Iterate over all array elements.
    ///
    /// This supports indefinite and definite length arrays and uses the
    /// [`Decode`] trait to decode each element. Consequently *only
    /// homogenous arrays are supported by this method*.
    pub fn array_iter_with<'a, C, T>(&'a mut self, ctx: &'a mut C) -> Result<ArrayIterWithCtx<'a, 'b, C, T>, Error>
    where
        T: Decode<'b, C>
    {
        let len = self.array()?;
        Ok(ArrayIterWithCtx { decoder: self, ctx, len, _mark: marker::PhantomData })
    }

    /// Begin decoding a map.
    ///
    /// CBOR maps are heterogenous collections (both in keys and in values)
    /// and may be of indefinite length. If the length is known it is returned
    /// as a `Some`, for indefinite maps a `None` is returned.
    pub fn map(&mut self) -> Result<Option<u64>, Error> {
        let p = self.pos;
        let b = self.read()?;
        if MAP != type_of(b) {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected map")
                .at(p))
        }
        match info_of(b) {
            31 => Ok(None),
            n  => Ok(Some(self.unsigned(n, p)?))
        }
    }

    /// Iterate over all map entries.
    ///
    /// This supports indefinite and definite length maps and uses the
    /// [`Decode`] trait to decode each key and value. Consequently *only
    /// homogenous maps are supported by this method*.
    pub fn map_iter<K, V>(&mut self) -> Result<MapIter<'_, 'b, K, V>, Error>
    where
        K: Decode<'b, ()>,
        V: Decode<'b, ()>
    {
        let len = self.map()?;
        Ok(MapIter { decoder: self, len, _mark: marker::PhantomData })
    }

    /// Iterate over all map entries.
    ///
    /// This supports indefinite and definite length maps and uses the
    /// [`Decode`] trait to decode each key and value. Consequently *only
    /// homogenous maps are supported by this method*.
    pub fn map_iter_with<'a, C, K, V>(&'a mut self, ctx: &'a mut C) -> Result<MapIterWithCtx<'a, 'b, C, K, V>, Error>
    where
        K: Decode<'b, C>,
        V: Decode<'b, C>
    {
        let len = self.map()?;
        Ok(MapIterWithCtx { decoder: self, ctx, len, _mark: marker::PhantomData })
    }

    /// Decode a CBOR tag.
    pub fn tag(&mut self) -> Result<Tag, Error> {
        let p = self.pos;
        let b = self.read()?;
        if TAGGED != type_of(b) {
            return Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected tag")
                .at(p))
        }
        self.unsigned(info_of(b), p).map(Tag::new)
    }

    /// Decode a CBOR null value.
    pub fn null(&mut self) -> Result<(), Error> {
        let p = self.pos;
        match self.read()? {
            0xf6 => Ok(()),
            n    => Err(Error::type_mismatch(self.type_of(n)?)
                .with_message("expected null")
                .at(p))
        }
    }

    /// Decode a CBOR undefined value.
    pub fn undefined(&mut self) -> Result<(), Error> {
        let p = self.pos;
        match self.read()? {
            0xf7 => Ok(()),
            n    => Err(Error::type_mismatch(self.type_of(n)?)
                .with_message("expected undefined")
                .at(p))
        }
    }

    /// Decode a CBOR simple value.
    pub fn simple(&mut self) -> Result<u8, Error> {
        let p = self.pos;
        match self.read()? {
            n @ SIMPLE ..= 0xf3 => Ok(n - SIMPLE),
            0xf8 => self.read(),
            n    => Err(Error::type_mismatch(self.type_of(n)?)
                .with_message("expected simple value")
                .at(p))
        }
    }

    /// Inspect the CBOR type at the current position.
    pub fn datatype(&self) -> Result<Type, Error> {
        self.type_of(self.current()?)
    }

    /// Iterate over a series of CBOR tokens.
    #[cfg(feature = "half")]
    pub fn tokens<'a>(&'a mut self) -> crate::decode::Tokenizer<'a, 'b> {
        crate::decode::Tokenizer::from(self)
    }

    /// Skip over the current CBOR value.
    #[cfg(feature = "alloc")]
    pub fn skip(&mut self) -> Result<(), Error> {
        // Unless we encounter indefinite-length arrays or maps inside of regular
        // maps or arrays we only need to count how many more CBOR items we need
        // to skip (initially starting with 1) or how many more break bytes we
        // need to expect (initially starting with 0).
        //
        // If we do need to handle indefinite items (other than bytes or strings),
        // inside of regular maps or arrays, we switch to using a stack of length
        // information, starting with the remaining number of potential breaks we
        // are still expecting and the number of items we still need to skip over
        // at that point.

        let mut nrounds = 1u64; // number of iterations over array and map elements
        let mut irounds = 0u64; // number of indefinite iterations
        let mut stack: alloc::vec::Vec<Option<u64>> = alloc::vec::Vec::new();

        while nrounds > 0 || irounds > 0 || !stack.is_empty() {
            match self.current()? {
                UNSIGNED ..= 0x1b => { self.u64()?; }
                SIGNED   ..= 0x3b => { self.int()?; }
                BYTES    ..= 0x5f => { for v in self.bytes_iter()? { v?; } }
                TEXT     ..= 0x7f => { for v in self.str_iter()? { v?; } }
                ARRAY    ..= 0x9f =>
                    match self.array()? {
                        Some(0) => {}
                        Some(n) =>
                            if nrounds == 0 && irounds == 0 {
                                stack.push(Some(n))
                            } else {
                                nrounds = nrounds.saturating_add(n)
                            }
                        None =>
                            if nrounds == 0 && irounds == 0 {
                                stack.push(None)
                            } else if nrounds < 2 {
                                irounds = irounds.saturating_add(1)
                            } else {
                                for _ in 0 .. irounds {
                                    stack.push(None)
                                }
                                stack.push(Some(nrounds - 1));
                                stack.push(None);
                                nrounds = 0;
                                irounds = 0
                            }
                    }
                MAP ..= 0xbf =>
                    match self.map()? {
                        Some(0) => {}
                        Some(n) =>
                            if nrounds == 0 && irounds == 0 {
                                stack.push(Some(n.saturating_mul(2)))
                            } else {
                                nrounds = nrounds.saturating_add(n.saturating_mul(2))
                            }
                        None =>
                            if nrounds == 0 && irounds == 0 {
                                stack.push(None)
                            } else if nrounds < 2 {
                                irounds = irounds.saturating_add(1)
                            } else {
                                for _ in 0 .. irounds {
                                    stack.push(None)
                                }
                                stack.push(Some(nrounds - 1));
                                stack.push(None);
                                nrounds = 0;
                                irounds = 0
                            }
                    }
                TAGGED ..= 0xdb => {
                    let p = self.pos;
                    self.read().and_then(|n| self.unsigned(info_of(n), p))?;
                    continue
                }
                SIMPLE ..= 0xfb => {
                    let p = self.pos;
                    self.read().and_then(|n| self.unsigned(info_of(n), p))?;
                }
                BREAK => {
                    self.read()?;
                    if nrounds == 0 && irounds == 0 {
                        if let Some(None) = stack.last() {
                            stack.pop();
                        }
                    } else {
                        irounds = irounds.saturating_sub(1)
                    }
                }
                other => return Err(Error::type_mismatch(self.type_of(other)?)
                    .at(self.pos)
                    .with_message("unknown type"))
            }
            if nrounds == 0 && irounds == 0 {
                while let Some(Some(0)) = stack.last() {
                     stack.pop();
                }
                match stack.last_mut() {
                    Some(Some(n)) => { *n -= 1 }
                    Some(None)    => {}
                    None          => break
                }
            } else {
                nrounds = nrounds.saturating_sub(1)
            }
        }

        Ok(())
    }

    /// Skip over the current CBOR value.
    ///
    /// Without feature `alloc`, skipping over maps or arrays that contain an
    /// indefinite-length map or array will return an error.
    #[cfg(not(feature = "alloc"))]
    pub fn skip(&mut self) -> Result<(), Error> {
        let mut nrounds = 1u64; // number of iterations over array and map elements
        let mut irounds = 0u64; // number of indefinite iterations

        let error_msg =
            "arrays and maps of indefinite length inside of \
            regular arrays or maps require feature flag `alloc`";

        while nrounds > 0 || irounds > 0 {
            match self.current()? {
                UNSIGNED ..= 0x1b => { self.u64()?; }
                SIGNED   ..= 0x3b => { self.int()?; }
                BYTES    ..= 0x5f => { for v in self.bytes_iter()? { v?; } }
                TEXT     ..= 0x7f => { for v in self.str_iter()? { v?; } }
                ARRAY    ..= 0x9f =>
                    if let Some(n) = self.array()? {
                        nrounds = nrounds.saturating_add(n)
                    } else if nrounds < 2 {
                        irounds = irounds.saturating_add(1)
                    } else {
                        return Err(Error::message(error_msg))
                    }
                MAP ..= 0xbf =>
                    if let Some(n) = self.map()? {
                        nrounds = nrounds.saturating_add(n.saturating_mul(2))
                    } else if nrounds < 2 {
                        irounds = irounds.saturating_add(1)
                    } else {
                        return Err(Error::message(error_msg))
                    }
                TAGGED ..= 0xdb => {
                    let p = self.pos;
                    self.read().and_then(|n| self.unsigned(info_of(n), p))?;
                    continue
                }
                SIMPLE ..= 0xfb => {
                    let p = self.pos;
                    self.read().and_then(|n| self.unsigned(info_of(n), p))?;
                }
                BREAK => {
                    self.read()?;
                    irounds = irounds.saturating_sub(1)
                }
                other => return Err(Error::type_mismatch(self.type_of(other)?)
                    .at(self.pos)
                    .with_message("not supported"))
            }
            nrounds = nrounds.saturating_sub(1)
        }

        Ok(())
    }

    /// Decode a `u64` value beginning with `b`.
    pub(crate) fn unsigned(&mut self, b: u8, p: usize) -> Result<u64, Error> {
        match b {
            n @ 0 ..= 0x17 => Ok(u64::from(n)),
            0x18 => self.read().map(u64::from),
            0x19 => self.read_array().map(u16::from_be_bytes).map(u64::from),
            0x1a => self.read_array().map(u32::from_be_bytes).map(u64::from),
            0x1b => self.read_array().map(u64::from_be_bytes),
            _    => Err(Error::type_mismatch(self.type_of(b)?)
                .with_message("expected u64")
                .at(p))
        }
    }

    /// Get the byte at the current position.
    fn current(&self) -> Result<u8, Error> {
        if let Some(b) = self.buf.get(self.pos) {
            return Ok(*b)
        }
        Err(Error::end_of_input())
    }

    /// Consume and return the byte at the current position.
    fn read(&mut self) -> Result<u8, Error> {
        if let Some(b) = self.buf.get(self.pos) {
            self.pos += 1;
            return Ok(*b)
        }
        Err(Error::end_of_input())
    }

    /// Peek to the next byte.
    fn peek(&self) -> Result<u8, Error> {
        self.pos.checked_add(1)
            .and_then(|i| self.buf.get(i).copied())
            .ok_or_else(Error::end_of_input)
    }

    /// Consume and return *n* bytes starting at the current position.
    fn read_slice(&mut self, n: usize) -> Result<&'b [u8], Error> {
        if let Some(b) = self.pos.checked_add(n).and_then(|end| self.buf.get(self.pos .. end)) {
            self.pos += n;
            return Ok(b)
        }
        Err(Error::end_of_input())
    }

    /// Consume and return *N* bytes starting at the current position.
    fn read_array<const N: usize>(&mut self) -> Result<[u8; N], Error> {
        self.read_slice(N).map(|slice| {
            let mut a = [0; N];
            a.copy_from_slice(slice);
            a
        })
    }

    /// Map the given byte to a [`Type`].
    fn type_of(&self, n: u8) -> Result<Type, Error> {
        Ok(match n {
            0x00 ..= 0x18        => Type::U8,
            0x19                 => Type::U16,
            0x1a                 => Type::U32,
            0x1b                 => Type::U64,
            0x20 ..= 0x37        => Type::I8,
            0x38                 => if self.peek()? < 0x80 { Type::I8  } else { Type::I16 }
            0x39                 => if self.peek()? < 0x80 { Type::I16 } else { Type::I32 }
            0x3a                 => if self.peek()? < 0x80 { Type::I32 } else { Type::I64 }
            0x3b                 => if self.peek()? < 0x80 { Type::I64 } else { Type::Int }
            0x40 ..= 0x5b        => Type::Bytes,
            0x5f                 => Type::BytesIndef,
            0x60 ..= 0x7b        => Type::String,
            0x7f                 => Type::StringIndef,
            0x80 ..= 0x9b        => Type::Array,
            0x9f                 => Type::ArrayIndef,
            0xa0 ..= 0xbb        => Type::Map,
            0xbf                 => Type::MapIndef,
            0xc0 ..= 0xdb        => Type::Tag,
            0xe0 ..= 0xf3 | 0xf8 => Type::Simple,
            0xf4 | 0xf5          => Type::Bool,
            0xf6                 => Type::Null,
            0xf7                 => Type::Undefined,
            0xf9                 => Type::F16,
            0xfa                 => Type::F32,
            0xfb                 => Type::F64,
            0xff                 => Type::Break,
            n                    => Type::Unknown(n)
        })
    }
}

/// An iterator over byte slices.
///
/// Returned from [`Decoder::bytes_iter`].
#[derive(Debug)]
pub struct BytesIter<'a, 'b> {
    decoder: &'a mut Decoder<'b>,
    len: Option<usize>
}

impl<'a, 'b> Iterator for BytesIter<'a, 'b> {
    type Item = Result<&'b [u8], Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)     => Some(self.decoder.bytes()),
                Err(e)    => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(0);
                Some(self.decoder.read_slice(n))
            }
        }
    }
}

/// An iterator over string slices.
///
/// Returned from [`Decoder::str_iter`].
#[derive(Debug)]
pub struct StrIter<'a, 'b> {
    decoder: &'a mut Decoder<'b>,
    len: Option<usize>,
    pos: usize
}

impl<'a, 'b> Iterator for StrIter<'a, 'b> {
    type Item = Result<&'b str, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)     => Some(self.decoder.str()),
                Err(e)    => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(0);
                Some(self.decoder.read_slice(n).and_then(|d| str::from_utf8(d).map_err(|e| Error::utf8(e).at(self.pos))))
            }
        }
    }
}

/// An iterator over array elements.
///
/// Returned from [`Decoder::array_iter`].
#[derive(Debug)]
pub struct ArrayIter<'a, 'b, T> {
    decoder: &'a mut Decoder<'b>,
    len: Option<u64>,
    _mark: marker::PhantomData<fn(T)>
}

impl<'a, 'b, T: Decode<'b, ()>> Iterator for ArrayIter<'a, 'b, T> {
    type Item = Result<T, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)     => Some(T::decode(self.decoder, &mut ())),
                Err(e)    => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(n - 1);
                Some(T::decode(self.decoder, &mut ()))
            }
        }
    }
}

/// An iterator over array elements.
///
/// Returned from [`Decoder::array_iter_with`].
#[derive(Debug)]
pub struct ArrayIterWithCtx<'a, 'b, C, T> {
    decoder: &'a mut Decoder<'b>,
    ctx: &'a mut C,
    len: Option<u64>,
    _mark: marker::PhantomData<fn(T)>
}

impl<'a, 'b, C, T: Decode<'b, C>> Iterator for ArrayIterWithCtx<'a, 'b, C, T> {
    type Item = Result<T, Error>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)     => Some(T::decode(self.decoder, self.ctx)),
                Err(e)    => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(n - 1);
                Some(T::decode(self.decoder, self.ctx))
            }
        }
    }
}

/// An iterator over map entries.
///
/// Returned from [`Decoder::map_iter`].
#[derive(Debug)]
pub struct MapIter<'a, 'b, K, V> {
    decoder: &'a mut Decoder<'b>,
    len: Option<u64>,
    _mark: marker::PhantomData<fn(K, V)>
}

impl<'a, 'b, K, V> Iterator for MapIter<'a, 'b, K, V>
where
    K: Decode<'b, ()>,
    V: Decode<'b, ()>
{
    type Item = Result<(K, V), Error>;

    fn next(&mut self) -> Option<Self::Item> {
        fn pair<'b, K, V>(d: &mut Decoder<'b>) -> Result<(K, V), Error>
        where
            K: Decode<'b, ()>,
            V: Decode<'b, ()>
        {
            Ok((K::decode(d, &mut ())?, V::decode(d, &mut ())?))
        }
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)  => Some(pair(self.decoder)),
                Err(e) => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(n - 1);
                Some(pair(self.decoder))
            }
        }
    }
}

/// An iterator over map entries.
///
/// Returned from [`Decoder::map_iter_with`].
#[derive(Debug)]
pub struct MapIterWithCtx<'a, 'b, C, K, V> {
    decoder: &'a mut Decoder<'b>,
    ctx: &'a mut C,
    len: Option<u64>,
    _mark: marker::PhantomData<fn(K, V)>
}

impl<'a, 'b, C, K, V> Iterator for MapIterWithCtx<'a, 'b, C, K, V>
where
    K: Decode<'b, C>,
    V: Decode<'b, C>
{
    type Item = Result<(K, V), Error>;

    fn next(&mut self) -> Option<Self::Item> {
        fn pair<'b, C, K, V>(d: &mut Decoder<'b>, ctx: &mut C) -> Result<(K, V), Error>
        where
            K: Decode<'b, C>,
            V: Decode<'b, C>
        {
            Ok((K::decode(d, ctx)?, V::decode(d, ctx)?))
        }
        match self.len {
            None => match self.decoder.current() {
                Ok(BREAK) => self.decoder.read().map(|_| None).transpose(),
                Ok(_)  => Some(pair(self.decoder, self.ctx)),
                Err(e) => Some(Err(e))
            }
            Some(0) => None,
            Some(n) => {
                self.len = Some(n - 1);
                Some(pair(self.decoder, self.ctx))
            }
        }
    }
}

/// A decoding probe to to look ahead what comes next.
///
/// A `Probe` derefs to [`Decoder`] and thus can be used like one without
/// affecting the decoder from which it was created.
//
// The current implementation just clones `Decoder` as it is very cheap
// to do so. `Probe` is nevertheless introduced to discourage use of
// `Decoder::clone` in client code for this purpose so that it stays
// independent of the current implementation.
// With a more heavyweight `Decoder`, `Probe` could only store a reference
// and the current position which it restores in a `Drop` impl.
#[derive(Debug)]
pub struct Probe<'a, 'b> {
    decoder: Decoder<'b>,
    _marker: marker::PhantomData<&'a mut ()>
}

impl<'b> core::ops::Deref for Probe<'_, 'b> {
    type Target = Decoder<'b>;

    fn deref(&self) -> &Self::Target {
        &self.decoder
    }
}

impl<'b> core::ops::DerefMut for Probe<'_, 'b> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.decoder
    }
}

/// Get the major type info of the given byte (highest 3 bits).
pub(crate) fn type_of(b: u8) -> u8 {
    b & 0b111_00000
}

/// Get the additionl type info of the given byte (lowest 5 bits).
pub(crate) fn info_of(b: u8) -> u8 {
    b & 0b000_11111
}

fn u64_to_usize(n: u64, pos: usize) -> Result<usize, Error> {
    n.try_into().map_err(|_| Error::overflow(n).at(pos).with_message("when converting u64 to usize"))
}

fn try_as<A, B>(val: A, msg: &'static str, pos: usize) -> Result<B, Error>
where
    A: TryInto<B> + Into<u64> + Copy
{
    val.try_into().map_err(|_| Error::overflow(val.into()).at(pos).with_message(msg))
}