heapless/vec.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
use core::{cmp::Ordering, fmt, hash, iter::FromIterator, mem::MaybeUninit, ops, ptr, slice};
/// A fixed capacity [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html)
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
///
/// // A vector with a fixed capacity of 8 elements allocated on the stack
/// let mut vec = Vec::<_, 8>::new();
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3].iter().cloned());
///
/// for x in &vec {
/// println!("{}", x);
/// }
/// assert_eq!(*vec, [7, 1, 2, 3]);
/// ```
pub struct Vec<T, const N: usize> {
// NOTE order is important for optimizations. the `len` first layout lets the compiler optimize
// `new` to: reserve stack space and zero the first word. With the fields in the reverse order
// the compiler optimizes `new` to `memclr`-ing the *entire* stack space, including the `buffer`
// field which should be left uninitialized. Optimizations were last checked with Rust 1.60
len: usize,
buffer: [MaybeUninit<T>; N],
}
impl<T, const N: usize> Vec<T, N> {
const ELEM: MaybeUninit<T> = MaybeUninit::uninit();
const INIT: [MaybeUninit<T>; N] = [Self::ELEM; N]; // important for optimization of `new`
/// Constructs a new, empty vector with a fixed capacity of `N`
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// // allocate the vector on the stack
/// let mut x: Vec<u8, 16> = Vec::new();
///
/// // allocate the vector in a static variable
/// static mut X: Vec<u8, 16> = Vec::new();
/// ```
/// `Vec` `const` constructor; wrap the returned value in [`Vec`].
pub const fn new() -> Self {
Self {
len: 0,
buffer: Self::INIT,
}
}
/// Constructs a new vector with a fixed capacity of `N` and fills it
/// with the provided slice.
///
/// This is equivalent to the following code:
///
/// ```
/// use heapless::Vec;
///
/// let mut v: Vec<u8, 16> = Vec::new();
/// v.extend_from_slice(&[1, 2, 3]).unwrap();
/// ```
#[inline]
pub fn from_slice(other: &[T]) -> Result<Self, ()>
where
T: Clone,
{
let mut v = Vec::new();
v.extend_from_slice(other)?;
Ok(v)
}
/// Clones a vec into a new vec
pub(crate) fn clone(&self) -> Self
where
T: Clone,
{
let mut new = Self::new();
// avoid `extend_from_slice` as that introduces a runtime check / panicking branch
for elem in self {
unsafe {
new.push_unchecked(elem.clone());
}
}
new
}
/// Returns a raw pointer to the vector’s buffer.
pub fn as_ptr(&self) -> *const T {
self.buffer.as_ptr() as *const T
}
/// Returns a raw pointer to the vector’s buffer, which may be mutated through.
pub fn as_mut_ptr(&mut self) -> *mut T {
self.buffer.as_mut_ptr() as *mut T
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
/// let buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
/// assert_eq!(buffer.as_slice(), &[1, 2, 3, 5, 8]);
/// ```
pub fn as_slice(&self) -> &[T] {
// NOTE(unsafe) avoid bound checks in the slicing operation
// &buffer[..self.len]
unsafe { slice::from_raw_parts(self.buffer.as_ptr() as *const T, self.len) }
}
/// Returns the contents of the vector as an array of length `M` if the length
/// of the vector is exactly `M`, otherwise returns `Err(self)`.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
/// let buffer: Vec<u8, 42> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
/// let array: [u8; 5] = buffer.into_array().unwrap();
/// assert_eq!(array, [1, 2, 3, 5, 8]);
/// ```
pub fn into_array<const M: usize>(self) -> Result<[T; M], Self> {
if self.len() == M {
// This is how the unstable `MaybeUninit::array_assume_init` method does it
let array = unsafe { (&self.buffer as *const _ as *const [T; M]).read() };
// We don't want `self`'s destructor to be called because that would drop all the
// items in the array
core::mem::forget(self);
Ok(array)
} else {
Err(self)
}
}
/// Extracts a mutable slice containing the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
/// let mut buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap();
/// buffer[0] = 9;
/// assert_eq!(buffer.as_slice(), &[9, 2, 3, 5, 8]);
/// ```
pub fn as_mut_slice(&mut self) -> &mut [T] {
// NOTE(unsafe) avoid bound checks in the slicing operation
// &mut buffer[..self.len]
unsafe { slice::from_raw_parts_mut(self.buffer.as_mut_ptr() as *mut T, self.len) }
}
/// Returns the maximum number of elements the vector can hold.
pub const fn capacity(&self) -> usize {
N
}
/// Clears the vector, removing all values.
pub fn clear(&mut self) {
self.truncate(0);
}
/// Extends the vec from an iterator.
///
/// # Panic
///
/// Panics if the vec cannot hold all elements of the iterator.
pub fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = T>,
{
for elem in iter {
self.push(elem).ok().unwrap()
}
}
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` vector is traversed in-order.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut vec = Vec::<u8, 8>::new();
/// vec.push(1).unwrap();
/// vec.extend_from_slice(&[2, 3, 4]).unwrap();
/// assert_eq!(*vec, [1, 2, 3, 4]);
/// ```
pub fn extend_from_slice(&mut self, other: &[T]) -> Result<(), ()>
where
T: Clone,
{
if self.len + other.len() > self.capacity() {
// won't fit in the `Vec`; don't modify anything and return an error
Err(())
} else {
for elem in other {
unsafe {
self.push_unchecked(elem.clone());
}
}
Ok(())
}
}
/// Removes the last element from a vector and returns it, or `None` if it's empty
pub fn pop(&mut self) -> Option<T> {
if self.len != 0 {
Some(unsafe { self.pop_unchecked() })
} else {
None
}
}
/// Appends an `item` to the back of the collection
///
/// Returns back the `item` if the vector is full
pub fn push(&mut self, item: T) -> Result<(), T> {
if self.len < self.capacity() {
unsafe { self.push_unchecked(item) }
Ok(())
} else {
Err(item)
}
}
/// Removes the last element from a vector and returns it
///
/// # Safety
///
/// This assumes the vec to have at least one element.
pub unsafe fn pop_unchecked(&mut self) -> T {
debug_assert!(!self.is_empty());
self.len -= 1;
(self.buffer.get_unchecked_mut(self.len).as_ptr() as *const T).read()
}
/// Appends an `item` to the back of the collection
///
/// # Safety
///
/// This assumes the vec is not full.
pub unsafe fn push_unchecked(&mut self, item: T) {
// NOTE(ptr::write) the memory slot that we are about to write to is uninitialized. We
// use `ptr::write` to avoid running `T`'s destructor on the uninitialized memory
debug_assert!(!self.is_full());
*self.buffer.get_unchecked_mut(self.len) = MaybeUninit::new(item);
self.len += 1;
}
/// Shortens the vector, keeping the first `len` elements and dropping the rest.
pub fn truncate(&mut self, len: usize) {
// This is safe because:
//
// * the slice passed to `drop_in_place` is valid; the `len > self.len`
// case avoids creating an invalid slice, and
// * the `len` of the vector is shrunk before calling `drop_in_place`,
// such that no value will be dropped twice in case `drop_in_place`
// were to panic once (if it panics twice, the program aborts).
unsafe {
// Note: It's intentional that this is `>` and not `>=`.
// Changing it to `>=` has negative performance
// implications in some cases. See rust-lang/rust#78884 for more.
if len > self.len {
return;
}
let remaining_len = self.len - len;
let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
self.len = len;
ptr::drop_in_place(s);
}
}
/// Resizes the Vec in-place so that len is equal to new_len.
///
/// If new_len is greater than len, the Vec is extended by the
/// difference, with each additional slot filled with value. If
/// new_len is less than len, the Vec is simply truncated.
///
/// See also [`resize_default`](Self::resize_default).
pub fn resize(&mut self, new_len: usize, value: T) -> Result<(), ()>
where
T: Clone,
{
if new_len > self.capacity() {
return Err(());
}
if new_len > self.len {
while self.len < new_len {
self.push(value.clone()).ok();
}
} else {
self.truncate(new_len);
}
Ok(())
}
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with `Default::default()`.
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// See also [`resize`](Self::resize).
pub fn resize_default(&mut self, new_len: usize) -> Result<(), ()>
where
T: Clone + Default,
{
self.resize(new_len, T::default())
}
/// Forces the length of the vector to `new_len`.
///
/// This is a low-level operation that maintains none of the normal
/// invariants of the type. Normally changing the length of a vector
/// is done using one of the safe operations instead, such as
/// [`truncate`], [`resize`], [`extend`], or [`clear`].
///
/// [`truncate`]: Self::truncate
/// [`resize`]: Self::resize
/// [`extend`]: core::iter::Extend
/// [`clear`]: Self::clear
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: Self::capacity
///
/// # Examples
///
/// This method can be useful for situations in which the vector
/// is serving as a buffer for other code, particularly over FFI:
///
/// ```no_run
/// # #![allow(dead_code)]
/// use heapless::Vec;
///
/// # // This is just a minimal skeleton for the doc example;
/// # // don't use this as a starting point for a real library.
/// # pub struct StreamWrapper { strm: *mut core::ffi::c_void }
/// # const Z_OK: i32 = 0;
/// # extern "C" {
/// # fn deflateGetDictionary(
/// # strm: *mut core::ffi::c_void,
/// # dictionary: *mut u8,
/// # dictLength: *mut usize,
/// # ) -> i32;
/// # }
/// # impl StreamWrapper {
/// pub fn get_dictionary(&self) -> Option<Vec<u8, 32768>> {
/// // Per the FFI method's docs, "32768 bytes is always enough".
/// let mut dict = Vec::new();
/// let mut dict_length = 0;
/// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
/// // 1. `dict_length` elements were initialized.
/// // 2. `dict_length` <= the capacity (32_768)
/// // which makes `set_len` safe to call.
/// unsafe {
/// // Make the FFI call...
/// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
/// if r == Z_OK {
/// // ...and update the length to what was initialized.
/// dict.set_len(dict_length);
/// Some(dict)
/// } else {
/// None
/// }
/// }
/// }
/// # }
/// ```
///
/// While the following example is sound, there is a memory leak since
/// the inner vectors were not freed prior to the `set_len` call:
///
/// ```
/// use core::iter::FromIterator;
/// use heapless::Vec;
///
/// let mut vec = Vec::<Vec<u8, 3>, 3>::from_iter(
/// [
/// Vec::from_iter([1, 0, 0].iter().cloned()),
/// Vec::from_iter([0, 1, 0].iter().cloned()),
/// Vec::from_iter([0, 0, 1].iter().cloned()),
/// ]
/// .iter()
/// .cloned()
/// );
/// // SAFETY:
/// // 1. `old_len..0` is empty so no elements need to be initialized.
/// // 2. `0 <= capacity` always holds whatever `capacity` is.
/// unsafe {
/// vec.set_len(0);
/// }
/// ```
///
/// Normally, here, one would use [`clear`] instead to correctly drop
/// the contents and thus not leak memory.
pub unsafe fn set_len(&mut self, new_len: usize) {
debug_assert!(new_len <= self.capacity());
self.len = new_len
}
/// Removes an element from the vector and returns it.
///
/// The removed element is replaced by the last element of the vector.
///
/// This does not preserve ordering, but is O(1).
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///// use heapless::consts::*;
///
/// let mut v: Vec<_, 8> = Vec::new();
/// v.push("foo").unwrap();
/// v.push("bar").unwrap();
/// v.push("baz").unwrap();
/// v.push("qux").unwrap();
///
/// assert_eq!(v.swap_remove(1), "bar");
/// assert_eq!(&*v, ["foo", "qux", "baz"]);
///
/// assert_eq!(v.swap_remove(0), "foo");
/// assert_eq!(&*v, ["baz", "qux"]);
/// ```
pub fn swap_remove(&mut self, index: usize) -> T {
assert!(index < self.len);
unsafe { self.swap_remove_unchecked(index) }
}
/// Removes an element from the vector and returns it.
///
/// The removed element is replaced by the last element of the vector.
///
/// This does not preserve ordering, but is O(1).
///
/// # Safety
///
/// Assumes `index` within bounds.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut v: Vec<_, 8> = Vec::new();
/// v.push("foo").unwrap();
/// v.push("bar").unwrap();
/// v.push("baz").unwrap();
/// v.push("qux").unwrap();
///
/// assert_eq!(unsafe { v.swap_remove_unchecked(1) }, "bar");
/// assert_eq!(&*v, ["foo", "qux", "baz"]);
///
/// assert_eq!(unsafe { v.swap_remove_unchecked(0) }, "foo");
/// assert_eq!(&*v, ["baz", "qux"]);
/// ```
pub unsafe fn swap_remove_unchecked(&mut self, index: usize) -> T {
let length = self.len();
debug_assert!(index < length);
let value = ptr::read(self.as_ptr().add(index));
let base_ptr = self.as_mut_ptr();
ptr::copy(base_ptr.add(length - 1), base_ptr.add(index), 1);
self.len -= 1;
value
}
/// Returns true if the vec is full
#[inline]
pub fn is_full(&self) -> bool {
self.len == self.capacity()
}
/// Returns true if the vec is empty
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns `true` if `needle` is a prefix of the Vec.
///
/// Always returns `true` if `needle` is an empty slice.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let v: Vec<_, 8> = Vec::from_slice(b"abc").unwrap();
/// assert_eq!(v.starts_with(b""), true);
/// assert_eq!(v.starts_with(b"ab"), true);
/// assert_eq!(v.starts_with(b"bc"), false);
/// ```
#[inline]
pub fn starts_with(&self, needle: &[T]) -> bool
where
T: PartialEq,
{
let n = needle.len();
self.len >= n && needle == &self[..n]
}
/// Returns `true` if `needle` is a suffix of the Vec.
///
/// Always returns `true` if `needle` is an empty slice.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let v: Vec<_, 8> = Vec::from_slice(b"abc").unwrap();
/// assert_eq!(v.ends_with(b""), true);
/// assert_eq!(v.ends_with(b"ab"), false);
/// assert_eq!(v.ends_with(b"bc"), true);
/// ```
#[inline]
pub fn ends_with(&self, needle: &[T]) -> bool
where
T: PartialEq,
{
let (v, n) = (self.len(), needle.len());
v >= n && needle == &self[v - n..]
}
/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// Returns back the `element` if the vector is full.
///
/// # Panics
///
/// Panics if `index > len`.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap();
/// vec.insert(1, 4);
/// assert_eq!(vec, [1, 4, 2, 3]);
/// vec.insert(4, 5);
/// assert_eq!(vec, [1, 4, 2, 3, 5]);
/// ```
pub fn insert(&mut self, index: usize, element: T) -> Result<(), T> {
let len = self.len();
if index > len {
panic!(
"insertion index (is {}) should be <= len (is {})",
index, len
);
}
// check there's space for the new element
if self.is_full() {
return Err(element);
}
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().add(index);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
Ok(())
}
/// Removes and returns the element at position `index` within the vector,
/// shifting all elements after it to the left.
///
/// Note: Because this shifts over the remaining elements, it has a
/// worst-case performance of *O*(*n*). If you don't need the order of
/// elements to be preserved, use [`swap_remove`] instead. If you'd like to
/// remove elements from the beginning of the `Vec`, consider using
/// [`Deque::pop_front`] instead.
///
/// [`swap_remove`]: Vec::swap_remove
/// [`Deque::pop_front`]: crate::Deque::pop_front
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut v: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap();
/// assert_eq!(v.remove(1), 2);
/// assert_eq!(v, [1, 3]);
/// ```
pub fn remove(&mut self, index: usize) -> T {
let len = self.len();
if index >= len {
panic!("removal index (is {}) should be < len (is {})", index, len);
}
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().add(index);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.offset(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` for which `f(&e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap();
/// vec.retain(|&x| x % 2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
///
/// Because the elements are visited exactly once in the original order,
/// external state may be used to decide which elements to keep.
///
/// ```
/// use heapless::Vec;
///
/// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4, 5]).unwrap();
/// let keep = [false, true, true, false, true];
/// let mut iter = keep.iter();
/// vec.retain(|_| *iter.next().unwrap());
/// assert_eq!(vec, [2, 3, 5]);
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.retain_mut(|elem| f(elem));
}
/// Retains only the elements specified by the predicate, passing a mutable reference to it.
///
/// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
/// This method operates in place, visiting each element exactly once in the
/// original order, and preserves the order of the retained elements.
///
/// # Examples
///
/// ```
/// use heapless::Vec;
///
/// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap();
/// vec.retain_mut(|x| if *x <= 3 {
/// *x += 1;
/// true
/// } else {
/// false
/// });
/// assert_eq!(vec, [2, 3, 4]);
/// ```
pub fn retain_mut<F>(&mut self, mut f: F)
where
F: FnMut(&mut T) -> bool,
{
let original_len = self.len();
// Avoid double drop if the drop guard is not executed,
// since we may make some holes during the process.
unsafe { self.set_len(0) };
// Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
// |<- processed len ->| ^- next to check
// |<- deleted cnt ->|
// |<- original_len ->|
// Kept: Elements which predicate returns true on.
// Hole: Moved or dropped element slot.
// Unchecked: Unchecked valid elements.
//
// This drop guard will be invoked when predicate or `drop` of element panicked.
// It shifts unchecked elements to cover holes and `set_len` to the correct length.
// In cases when predicate and `drop` never panick, it will be optimized out.
struct BackshiftOnDrop<'a, T, const N: usize> {
v: &'a mut Vec<T, N>,
processed_len: usize,
deleted_cnt: usize,
original_len: usize,
}
impl<T, const N: usize> Drop for BackshiftOnDrop<'_, T, N> {
fn drop(&mut self) {
if self.deleted_cnt > 0 {
// SAFETY: Trailing unchecked items must be valid since we never touch them.
unsafe {
ptr::copy(
self.v.as_ptr().add(self.processed_len),
self.v
.as_mut_ptr()
.add(self.processed_len - self.deleted_cnt),
self.original_len - self.processed_len,
);
}
}
// SAFETY: After filling holes, all items are in contiguous memory.
unsafe {
self.v.set_len(self.original_len - self.deleted_cnt);
}
}
}
let mut g = BackshiftOnDrop {
v: self,
processed_len: 0,
deleted_cnt: 0,
original_len,
};
fn process_loop<F, T, const N: usize, const DELETED: bool>(
original_len: usize,
f: &mut F,
g: &mut BackshiftOnDrop<'_, T, N>,
) where
F: FnMut(&mut T) -> bool,
{
while g.processed_len != original_len {
let p = g.v.as_mut_ptr();
// SAFETY: Unchecked element must be valid.
let cur = unsafe { &mut *p.add(g.processed_len) };
if !f(cur) {
// Advance early to avoid double drop if `drop_in_place` panicked.
g.processed_len += 1;
g.deleted_cnt += 1;
// SAFETY: We never touch this element again after dropped.
unsafe { ptr::drop_in_place(cur) };
// We already advanced the counter.
if DELETED {
continue;
} else {
break;
}
}
if DELETED {
// SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
// We use copy for move, and never touch this element again.
unsafe {
let hole_slot = p.add(g.processed_len - g.deleted_cnt);
ptr::copy_nonoverlapping(cur, hole_slot, 1);
}
}
g.processed_len += 1;
}
}
// Stage 1: Nothing was deleted.
process_loop::<F, T, N, false>(original_len, &mut f, &mut g);
// Stage 2: Some elements were deleted.
process_loop::<F, T, N, true>(original_len, &mut f, &mut g);
// All item are processed. This can be optimized to `set_len` by LLVM.
drop(g);
}
}
// Trait implementations
impl<T, const N: usize> Default for Vec<T, N> {
fn default() -> Self {
Self::new()
}
}
impl<T, const N: usize> fmt::Debug for Vec<T, N>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
<[T] as fmt::Debug>::fmt(self, f)
}
}
impl<const N: usize> fmt::Write for Vec<u8, N> {
fn write_str(&mut self, s: &str) -> fmt::Result {
match self.extend_from_slice(s.as_bytes()) {
Ok(()) => Ok(()),
Err(_) => Err(fmt::Error),
}
}
}
impl<T, const N: usize> Drop for Vec<T, N> {
fn drop(&mut self) {
// We drop each element used in the vector by turning into a &mut[T]
unsafe {
ptr::drop_in_place(self.as_mut_slice());
}
}
}
impl<'a, T: Clone, const N: usize> TryFrom<&'a [T]> for Vec<T, N> {
type Error = ();
fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> {
Vec::from_slice(slice)
}
}
impl<T, const N: usize> Extend<T> for Vec<T, N> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = T>,
{
self.extend(iter)
}
}
impl<'a, T, const N: usize> Extend<&'a T> for Vec<T, N>
where
T: 'a + Copy,
{
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = &'a T>,
{
self.extend(iter.into_iter().cloned())
}
}
impl<T, const N: usize> hash::Hash for Vec<T, N>
where
T: core::hash::Hash,
{
fn hash<H: hash::Hasher>(&self, state: &mut H) {
<[T] as hash::Hash>::hash(self, state)
}
}
impl<'a, T, const N: usize> IntoIterator for &'a Vec<T, N> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, T, const N: usize> IntoIterator for &'a mut Vec<T, N> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<T, const N: usize> FromIterator<T> for Vec<T, N> {
fn from_iter<I>(iter: I) -> Self
where
I: IntoIterator<Item = T>,
{
let mut vec = Vec::new();
for i in iter {
vec.push(i).ok().expect("Vec::from_iter overflow");
}
vec
}
}
/// An iterator that moves out of an [`Vec`][`Vec`].
///
/// This struct is created by calling the `into_iter` method on [`Vec`][`Vec`].
pub struct IntoIter<T, const N: usize> {
vec: Vec<T, N>,
next: usize,
}
impl<T, const N: usize> Iterator for IntoIter<T, N> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.next < self.vec.len() {
let item = unsafe {
(self.vec.buffer.get_unchecked_mut(self.next).as_ptr() as *const T).read()
};
self.next += 1;
Some(item)
} else {
None
}
}
}
impl<T, const N: usize> Clone for IntoIter<T, N>
where
T: Clone,
{
fn clone(&self) -> Self {
let mut vec = Vec::new();
if self.next < self.vec.len() {
let s = unsafe {
slice::from_raw_parts(
(self.vec.buffer.as_ptr() as *const T).add(self.next),
self.vec.len() - self.next,
)
};
vec.extend_from_slice(s).ok();
}
Self { vec, next: 0 }
}
}
impl<T, const N: usize> Drop for IntoIter<T, N> {
fn drop(&mut self) {
unsafe {
// Drop all the elements that have not been moved out of vec
ptr::drop_in_place(&mut self.vec.as_mut_slice()[self.next..]);
// Prevent dropping of other elements
self.vec.len = 0;
}
}
}
impl<T, const N: usize> IntoIterator for Vec<T, N> {
type Item = T;
type IntoIter = IntoIter<T, N>;
fn into_iter(self) -> Self::IntoIter {
IntoIter { vec: self, next: 0 }
}
}
impl<A, B, const N1: usize, const N2: usize> PartialEq<Vec<B, N2>> for Vec<A, N1>
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<B, N2>) -> bool {
<[A]>::eq(self, &**other)
}
}
// Vec<A, N> == [B]
impl<A, B, const N: usize> PartialEq<[B]> for Vec<A, N>
where
A: PartialEq<B>,
{
fn eq(&self, other: &[B]) -> bool {
<[A]>::eq(self, &other[..])
}
}
// [B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for [B]
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<A, N>) -> bool {
<[A]>::eq(other, &self[..])
}
}
// Vec<A, N> == &[B]
impl<A, B, const N: usize> PartialEq<&[B]> for Vec<A, N>
where
A: PartialEq<B>,
{
fn eq(&self, other: &&[B]) -> bool {
<[A]>::eq(self, &other[..])
}
}
// &[B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &[B]
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<A, N>) -> bool {
<[A]>::eq(other, &self[..])
}
}
// Vec<A, N> == &mut [B]
impl<A, B, const N: usize> PartialEq<&mut [B]> for Vec<A, N>
where
A: PartialEq<B>,
{
fn eq(&self, other: &&mut [B]) -> bool {
<[A]>::eq(self, &other[..])
}
}
// &mut [B] == Vec<A, N>
impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &mut [B]
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<A, N>) -> bool {
<[A]>::eq(other, &self[..])
}
}
// Vec<A, N> == [B; M]
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<[B; M]> for Vec<A, N>
where
A: PartialEq<B>,
{
fn eq(&self, other: &[B; M]) -> bool {
<[A]>::eq(self, &other[..])
}
}
// [B; M] == Vec<A, N>
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for [B; M]
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<A, N>) -> bool {
<[A]>::eq(other, &self[..])
}
}
// Vec<A, N> == &[B; M]
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<&[B; M]> for Vec<A, N>
where
A: PartialEq<B>,
{
fn eq(&self, other: &&[B; M]) -> bool {
<[A]>::eq(self, &other[..])
}
}
// &[B; M] == Vec<A, N>
// Equality does not require equal capacity
impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for &[B; M]
where
A: PartialEq<B>,
{
fn eq(&self, other: &Vec<A, N>) -> bool {
<[A]>::eq(other, &self[..])
}
}
// Implements Eq if underlying data is Eq
impl<T, const N: usize> Eq for Vec<T, N> where T: Eq {}
impl<T, const N1: usize, const N2: usize> PartialOrd<Vec<T, N2>> for Vec<T, N1>
where
T: PartialOrd,
{
fn partial_cmp(&self, other: &Vec<T, N2>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
impl<T, const N: usize> Ord for Vec<T, N>
where
T: Ord,
{
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
impl<T, const N: usize> ops::Deref for Vec<T, N> {
type Target = [T];
fn deref(&self) -> &[T] {
self.as_slice()
}
}
impl<T, const N: usize> ops::DerefMut for Vec<T, N> {
fn deref_mut(&mut self) -> &mut [T] {
self.as_mut_slice()
}
}
impl<T, const N: usize> AsRef<Vec<T, N>> for Vec<T, N> {
#[inline]
fn as_ref(&self) -> &Self {
self
}
}
impl<T, const N: usize> AsMut<Vec<T, N>> for Vec<T, N> {
#[inline]
fn as_mut(&mut self) -> &mut Self {
self
}
}
impl<T, const N: usize> AsRef<[T]> for Vec<T, N> {
#[inline]
fn as_ref(&self) -> &[T] {
self
}
}
impl<T, const N: usize> AsMut<[T]> for Vec<T, N> {
#[inline]
fn as_mut(&mut self) -> &mut [T] {
self
}
}
impl<T, const N: usize> Clone for Vec<T, N>
where
T: Clone,
{
fn clone(&self) -> Self {
self.clone()
}
}
#[cfg(test)]
mod tests {
use crate::Vec;
use core::fmt::Write;
#[test]
fn static_new() {
static mut _V: Vec<i32, 4> = Vec::new();
}
#[test]
fn stack_new() {
let mut _v: Vec<i32, 4> = Vec::new();
}
#[test]
fn is_full_empty() {
let mut v: Vec<i32, 4> = Vec::new();
assert!(v.is_empty());
assert!(!v.is_full());
v.push(1).unwrap();
assert!(!v.is_empty());
assert!(!v.is_full());
v.push(1).unwrap();
assert!(!v.is_empty());
assert!(!v.is_full());
v.push(1).unwrap();
assert!(!v.is_empty());
assert!(!v.is_full());
v.push(1).unwrap();
assert!(!v.is_empty());
assert!(v.is_full());
}
#[test]
fn drop() {
droppable!();
{
let mut v: Vec<Droppable, 2> = Vec::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
v.pop().unwrap();
}
assert_eq!(Droppable::count(), 0);
{
let mut v: Vec<Droppable, 2> = Vec::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
}
assert_eq!(Droppable::count(), 0);
}
#[test]
fn eq() {
let mut xs: Vec<i32, 4> = Vec::new();
let mut ys: Vec<i32, 8> = Vec::new();
assert_eq!(xs, ys);
xs.push(1).unwrap();
ys.push(1).unwrap();
assert_eq!(xs, ys);
}
#[test]
fn cmp() {
let mut xs: Vec<i32, 4> = Vec::new();
let mut ys: Vec<i32, 4> = Vec::new();
assert_eq!(xs, ys);
xs.push(1).unwrap();
ys.push(2).unwrap();
assert!(xs < ys);
}
#[test]
fn cmp_heterogenous_size() {
let mut xs: Vec<i32, 4> = Vec::new();
let mut ys: Vec<i32, 8> = Vec::new();
assert_eq!(xs, ys);
xs.push(1).unwrap();
ys.push(2).unwrap();
assert!(xs < ys);
}
#[test]
fn cmp_with_arrays_and_slices() {
let mut xs: Vec<i32, 12> = Vec::new();
xs.push(1).unwrap();
let array = [1];
assert_eq!(xs, array);
assert_eq!(array, xs);
assert_eq!(xs, array.as_slice());
assert_eq!(array.as_slice(), xs);
assert_eq!(xs, &array);
assert_eq!(&array, xs);
let longer_array = [1; 20];
assert_ne!(xs, longer_array);
assert_ne!(longer_array, xs);
}
#[test]
fn full() {
let mut v: Vec<i32, 4> = Vec::new();
v.push(0).unwrap();
v.push(1).unwrap();
v.push(2).unwrap();
v.push(3).unwrap();
assert!(v.push(4).is_err());
}
#[test]
fn iter() {
let mut v: Vec<i32, 4> = Vec::new();
v.push(0).unwrap();
v.push(1).unwrap();
v.push(2).unwrap();
v.push(3).unwrap();
let mut items = v.iter();
assert_eq!(items.next(), Some(&0));
assert_eq!(items.next(), Some(&1));
assert_eq!(items.next(), Some(&2));
assert_eq!(items.next(), Some(&3));
assert_eq!(items.next(), None);
}
#[test]
fn iter_mut() {
let mut v: Vec<i32, 4> = Vec::new();
v.push(0).unwrap();
v.push(1).unwrap();
v.push(2).unwrap();
v.push(3).unwrap();
let mut items = v.iter_mut();
assert_eq!(items.next(), Some(&mut 0));
assert_eq!(items.next(), Some(&mut 1));
assert_eq!(items.next(), Some(&mut 2));
assert_eq!(items.next(), Some(&mut 3));
assert_eq!(items.next(), None);
}
#[test]
fn collect_from_iter() {
let slice = &[1, 2, 3];
let vec: Vec<i32, 4> = slice.iter().cloned().collect();
assert_eq!(&vec, slice);
}
#[test]
#[should_panic]
fn collect_from_iter_overfull() {
let slice = &[1, 2, 3];
let _vec = slice.iter().cloned().collect::<Vec<_, 2>>();
}
#[test]
fn iter_move() {
let mut v: Vec<i32, 4> = Vec::new();
v.push(0).unwrap();
v.push(1).unwrap();
v.push(2).unwrap();
v.push(3).unwrap();
let mut items = v.into_iter();
assert_eq!(items.next(), Some(0));
assert_eq!(items.next(), Some(1));
assert_eq!(items.next(), Some(2));
assert_eq!(items.next(), Some(3));
assert_eq!(items.next(), None);
}
#[test]
fn iter_move_drop() {
droppable!();
{
let mut vec: Vec<Droppable, 2> = Vec::new();
vec.push(Droppable::new()).ok().unwrap();
vec.push(Droppable::new()).ok().unwrap();
let mut items = vec.into_iter();
// Move all
let _ = items.next();
let _ = items.next();
}
assert_eq!(Droppable::count(), 0);
{
let mut vec: Vec<Droppable, 2> = Vec::new();
vec.push(Droppable::new()).ok().unwrap();
vec.push(Droppable::new()).ok().unwrap();
let _items = vec.into_iter();
// Move none
}
assert_eq!(Droppable::count(), 0);
{
let mut vec: Vec<Droppable, 2> = Vec::new();
vec.push(Droppable::new()).ok().unwrap();
vec.push(Droppable::new()).ok().unwrap();
let mut items = vec.into_iter();
let _ = items.next(); // Move partly
}
assert_eq!(Droppable::count(), 0);
}
#[test]
fn push_and_pop() {
let mut v: Vec<i32, 4> = Vec::new();
assert_eq!(v.len(), 0);
assert_eq!(v.pop(), None);
assert_eq!(v.len(), 0);
v.push(0).unwrap();
assert_eq!(v.len(), 1);
assert_eq!(v.pop(), Some(0));
assert_eq!(v.len(), 0);
assert_eq!(v.pop(), None);
assert_eq!(v.len(), 0);
}
#[test]
fn resize_size_limit() {
let mut v: Vec<u8, 4> = Vec::new();
v.resize(0, 0).unwrap();
v.resize(4, 0).unwrap();
v.resize(5, 0).err().expect("full");
}
#[test]
fn resize_length_cases() {
let mut v: Vec<u8, 4> = Vec::new();
assert_eq!(v.len(), 0);
// Grow by 1
v.resize(1, 0).unwrap();
assert_eq!(v.len(), 1);
// Grow by 2
v.resize(3, 0).unwrap();
assert_eq!(v.len(), 3);
// Resize to current size
v.resize(3, 0).unwrap();
assert_eq!(v.len(), 3);
// Shrink by 1
v.resize(2, 0).unwrap();
assert_eq!(v.len(), 2);
// Shrink by 2
v.resize(0, 0).unwrap();
assert_eq!(v.len(), 0);
}
#[test]
fn resize_contents() {
let mut v: Vec<u8, 4> = Vec::new();
// New entries take supplied value when growing
v.resize(1, 17).unwrap();
assert_eq!(v[0], 17);
// Old values aren't changed when growing
v.resize(2, 18).unwrap();
assert_eq!(v[0], 17);
assert_eq!(v[1], 18);
// Old values aren't changed when length unchanged
v.resize(2, 0).unwrap();
assert_eq!(v[0], 17);
assert_eq!(v[1], 18);
// Old values aren't changed when shrinking
v.resize(1, 0).unwrap();
assert_eq!(v[0], 17);
}
#[test]
fn resize_default() {
let mut v: Vec<u8, 4> = Vec::new();
// resize_default is implemented using resize, so just check the
// correct value is being written.
v.resize_default(1).unwrap();
assert_eq!(v[0], 0);
}
#[test]
fn write() {
let mut v: Vec<u8, 4> = Vec::new();
write!(v, "{:x}", 1234).unwrap();
assert_eq!(&v[..], b"4d2");
}
#[test]
fn extend_from_slice() {
let mut v: Vec<u8, 4> = Vec::new();
assert_eq!(v.len(), 0);
v.extend_from_slice(&[1, 2]).unwrap();
assert_eq!(v.len(), 2);
assert_eq!(v.as_slice(), &[1, 2]);
v.extend_from_slice(&[3]).unwrap();
assert_eq!(v.len(), 3);
assert_eq!(v.as_slice(), &[1, 2, 3]);
assert!(v.extend_from_slice(&[4, 5]).is_err());
assert_eq!(v.len(), 3);
assert_eq!(v.as_slice(), &[1, 2, 3]);
}
#[test]
fn from_slice() {
// Successful construction
let v: Vec<u8, 4> = Vec::from_slice(&[1, 2, 3]).unwrap();
assert_eq!(v.len(), 3);
assert_eq!(v.as_slice(), &[1, 2, 3]);
// Slice too large
assert!(Vec::<u8, 2>::from_slice(&[1, 2, 3]).is_err());
}
#[test]
fn starts_with() {
let v: Vec<_, 8> = Vec::from_slice(b"ab").unwrap();
assert!(v.starts_with(&[]));
assert!(v.starts_with(b""));
assert!(v.starts_with(b"a"));
assert!(v.starts_with(b"ab"));
assert!(!v.starts_with(b"abc"));
assert!(!v.starts_with(b"ba"));
assert!(!v.starts_with(b"b"));
}
#[test]
fn ends_with() {
let v: Vec<_, 8> = Vec::from_slice(b"ab").unwrap();
assert!(v.ends_with(&[]));
assert!(v.ends_with(b""));
assert!(v.ends_with(b"b"));
assert!(v.ends_with(b"ab"));
assert!(!v.ends_with(b"abc"));
assert!(!v.ends_with(b"ba"));
assert!(!v.ends_with(b"a"));
}
#[test]
fn zero_capacity() {
let mut v: Vec<u8, 0> = Vec::new();
// Validate capacity
assert_eq!(v.capacity(), 0);
// Make sure there is no capacity
assert!(v.push(1).is_err());
// Validate length
assert_eq!(v.len(), 0);
// Validate pop
assert_eq!(v.pop(), None);
// Validate slice
assert_eq!(v.as_slice(), &[]);
// Validate empty
assert!(v.is_empty());
// Validate full
assert!(v.is_full());
}
}