heapless/pool/boxed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
//! `std::boxed::Box`-like API on top of a lock-free memory pool
//!
//! # Example usage
//!
//! ```
//! use heapless::{box_pool, pool::boxed::{Box, BoxBlock}};
//!
//! box_pool!(P: u128);
//!
//! // cannot allocate without first giving memory blocks to the pool
//! assert!(P.alloc(42).is_err());
//!
//! // (some `no_std` runtimes have safe APIs to create `&'static mut` references)
//! let block: &'static mut BoxBlock<u128> = unsafe {
//! static mut B: BoxBlock <u128>= BoxBlock::new();
//! &mut B
//! };
//!
//! // give block of memory to the pool
//! P.manage(block);
//!
//! // it's now possible to allocate
//! let mut boxed = P.alloc(1).unwrap();
//!
//! // mutation is possible
//! *boxed += 1;
//! assert_eq!(2, *boxed);
//!
//! // number of boxes is limited to the number of blocks managed by the pool
//! let res = P.alloc(3);
//! assert!(res.is_err());
//!
//! // give another memory block to the pool
//! P.manage(unsafe {
//! static mut B: BoxBlock<u128> = BoxBlock::new();
//! &mut B
//! });
//!
//! // cloning also consumes a memory block from the pool
//! let mut separate_box = boxed.clone();
//! *separate_box += 1;
//! assert_eq!(3, *separate_box);
//!
//! // after the clone it's not possible to allocate again
//! let res = P.alloc(4);
//! assert!(res.is_err());
//!
//! // `boxed`'s destructor returns the memory block to the pool
//! drop(boxed);
//!
//! // it's possible to allocate again
//! let res = P.alloc(5);
//!
//! assert!(res.is_ok());
//! ```
//!
//! # Array block initialization
//!
//! You can create a static variable that contains an array of memory blocks and give all the blocks
//! to the `BoxPool`. This requires an intermediate `const` value as shown below:
//!
//! ```
//! use heapless::{box_pool, pool::boxed::BoxBlock};
//!
//! box_pool!(P: u128);
//!
//! const POOL_CAPACITY: usize = 8;
//!
//! let blocks: &'static mut [BoxBlock<u128>] = {
//! const BLOCK: BoxBlock<u128> = BoxBlock::new(); // <=
//! static mut BLOCKS: [BoxBlock<u128>; POOL_CAPACITY] = [BLOCK; POOL_CAPACITY];
//! unsafe { &mut BLOCKS }
//! };
//!
//! for block in blocks {
//! P.manage(block);
//! }
//! ```
use core::{
fmt,
hash::{Hash, Hasher},
mem::{ManuallyDrop, MaybeUninit},
ops, ptr,
};
use stable_deref_trait::StableDeref;
use super::treiber::{NonNullPtr, Stack, UnionNode};
/// Creates a new `BoxPool` singleton with the given `$name` that manages the specified `$data_type`
///
/// For more extensive documentation see the [module level documentation](crate::pool::boxed)
#[macro_export]
macro_rules! box_pool {
($name:ident: $data_type:ty) => {
pub struct $name;
impl $crate::pool::boxed::BoxPool for $name {
type Data = $data_type;
fn singleton() -> &'static $crate::pool::boxed::BoxPoolImpl<$data_type> {
static $name: $crate::pool::boxed::BoxPoolImpl<$data_type> =
$crate::pool::boxed::BoxPoolImpl::new();
&$name
}
}
impl $name {
/// Inherent method version of `BoxPool::alloc`
#[allow(dead_code)]
pub fn alloc(
&self,
value: $data_type,
) -> Result<$crate::pool::boxed::Box<$name>, $data_type> {
<$name as $crate::pool::boxed::BoxPool>::alloc(value)
}
/// Inherent method version of `BoxPool::manage`
#[allow(dead_code)]
pub fn manage(&self, block: &'static mut $crate::pool::boxed::BoxBlock<$data_type>) {
<$name as $crate::pool::boxed::BoxPool>::manage(block)
}
}
};
}
/// A singleton that manages `pool::boxed::Box`-es
///
/// # Usage
///
/// Do not implement this trait yourself; instead use the `box_pool!` macro to create a type that
/// implements this trait.
///
/// # Semver guarantees
///
/// *Implementing* this trait is exempt from semver guarantees.
/// i.e. a new patch release is allowed to break downstream `BoxPool` implementations.
///
/// *Using* the trait, e.g. in generic code, does fall under semver guarantees.
pub trait BoxPool: Sized {
/// The data type managed by the memory pool
type Data: 'static;
/// `box_pool!` implementation detail
#[doc(hidden)]
fn singleton() -> &'static BoxPoolImpl<Self::Data>;
/// Allocate a new `Box` initialized to the given `value`
///
/// `manage` should be called at least once before calling `alloc`
///
/// # Errors
///
/// The `Err`or variant is returned when the memory pool has run out of memory blocks
fn alloc(value: Self::Data) -> Result<Box<Self>, Self::Data> {
Ok(Box {
node_ptr: Self::singleton().alloc(value)?,
})
}
/// Add a statically allocated memory block to the memory pool
fn manage(block: &'static mut BoxBlock<Self::Data>) {
Self::singleton().manage(block)
}
}
/// Like `std::boxed::Box` but managed by memory pool `P` rather than `#[global_allocator]`
pub struct Box<P>
where
P: BoxPool,
{
node_ptr: NonNullPtr<UnionNode<MaybeUninit<P::Data>>>,
}
impl<A> Clone for Box<A>
where
A: BoxPool,
A::Data: Clone,
{
fn clone(&self) -> Self {
A::alloc((**self).clone()).ok().expect("OOM")
}
}
impl<A> fmt::Debug for Box<A>
where
A: BoxPool,
A::Data: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
A::Data::fmt(self, f)
}
}
impl<P> ops::Deref for Box<P>
where
P: BoxPool,
{
type Target = P::Data;
fn deref(&self) -> &Self::Target {
unsafe { &*self.node_ptr.as_ptr().cast::<P::Data>() }
}
}
impl<P> ops::DerefMut for Box<P>
where
P: BoxPool,
{
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *self.node_ptr.as_ptr().cast::<P::Data>() }
}
}
unsafe impl<P> StableDeref for Box<P> where P: BoxPool {}
impl<A> fmt::Display for Box<A>
where
A: BoxPool,
A::Data: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
A::Data::fmt(self, f)
}
}
impl<P> Drop for Box<P>
where
P: BoxPool,
{
fn drop(&mut self) {
let node = self.node_ptr;
unsafe { ptr::drop_in_place(node.as_ptr().cast::<P::Data>()) }
unsafe { P::singleton().stack.push(node) }
}
}
impl<A> Eq for Box<A>
where
A: BoxPool,
A::Data: Eq,
{
}
impl<A> Hash for Box<A>
where
A: BoxPool,
A::Data: Hash,
{
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
(**self).hash(state)
}
}
impl<A> Ord for Box<A>
where
A: BoxPool,
A::Data: Ord,
{
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
A::Data::cmp(self, other)
}
}
impl<A, B> PartialEq<Box<B>> for Box<A>
where
A: BoxPool,
B: BoxPool,
A::Data: PartialEq<B::Data>,
{
fn eq(&self, other: &Box<B>) -> bool {
A::Data::eq(self, other)
}
}
impl<A, B> PartialOrd<Box<B>> for Box<A>
where
A: BoxPool,
B: BoxPool,
A::Data: PartialOrd<B::Data>,
{
fn partial_cmp(&self, other: &Box<B>) -> Option<core::cmp::Ordering> {
A::Data::partial_cmp(self, other)
}
}
unsafe impl<P> Send for Box<P>
where
P: BoxPool,
P::Data: Send,
{
}
unsafe impl<P> Sync for Box<P>
where
P: BoxPool,
P::Data: Sync,
{
}
/// `box_pool!` implementation detail
// newtype to avoid having to make field types public
#[doc(hidden)]
pub struct BoxPoolImpl<T> {
stack: Stack<UnionNode<MaybeUninit<T>>>,
}
impl<T> BoxPoolImpl<T> {
pub const fn new() -> Self {
Self {
stack: Stack::new(),
}
}
fn alloc(&self, value: T) -> Result<NonNullPtr<UnionNode<MaybeUninit<T>>>, T> {
if let Some(node_ptr) = self.stack.try_pop() {
unsafe { node_ptr.as_ptr().cast::<T>().write(value) }
Ok(node_ptr)
} else {
Err(value)
}
}
fn manage(&self, block: &'static mut BoxBlock<T>) {
let node: &'static mut _ = &mut block.node;
unsafe { self.stack.push(NonNullPtr::from_static_mut_ref(node)) }
}
}
unsafe impl<T> Sync for BoxPoolImpl<T> {}
/// A chunk of memory that a `BoxPool` singleton can manage
pub struct BoxBlock<T> {
node: UnionNode<MaybeUninit<T>>,
}
impl<T> BoxBlock<T> {
/// Creates a new memory block
pub const fn new() -> Self {
Self {
node: UnionNode {
data: ManuallyDrop::new(MaybeUninit::uninit()),
},
}
}
}
#[cfg(test)]
mod tests {
use core::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::thread;
use super::*;
#[test]
fn cannot_alloc_if_empty() {
box_pool!(P: i32);
assert_eq!(Err(42), P.alloc(42));
}
#[test]
fn can_alloc_if_pool_manages_one_block() {
box_pool!(P: i32);
let block = unsafe {
static mut B: BoxBlock<i32> = BoxBlock::new();
&mut B
};
P.manage(block);
assert_eq!(42, *P.alloc(42).unwrap());
}
#[test]
fn alloc_drop_alloc() {
box_pool!(P: i32);
let block = unsafe {
static mut B: BoxBlock<i32> = BoxBlock::new();
&mut B
};
P.manage(block);
let boxed = P.alloc(1).unwrap();
drop(boxed);
assert_eq!(2, *P.alloc(2).unwrap());
}
#[test]
fn runs_destructor_exactly_once_on_drop() {
static COUNT: AtomicUsize = AtomicUsize::new(0);
pub struct S;
impl Drop for S {
fn drop(&mut self) {
COUNT.fetch_add(1, Ordering::Relaxed);
}
}
box_pool!(P: S);
let block = unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
};
P.manage(block);
let boxed = P.alloc(S).ok().unwrap();
assert_eq!(0, COUNT.load(Ordering::Relaxed));
drop(boxed);
assert_eq!(1, COUNT.load(Ordering::Relaxed));
}
#[test]
fn zst_is_well_aligned() {
#[repr(align(4096))]
pub struct Zst4096;
box_pool!(P: Zst4096);
let block = unsafe {
static mut B: BoxBlock<Zst4096> = BoxBlock::new();
&mut B
};
P.manage(block);
let boxed = P.alloc(Zst4096).ok().unwrap();
let raw = &*boxed as *const Zst4096;
assert_eq!(0, raw as usize % 4096);
}
#[allow(clippy::redundant_clone)]
#[test]
fn can_clone_if_pool_is_not_exhausted() {
static STRUCT_CLONE_WAS_CALLED: AtomicBool = AtomicBool::new(false);
pub struct S;
impl Clone for S {
fn clone(&self) -> Self {
STRUCT_CLONE_WAS_CALLED.store(true, Ordering::Relaxed);
Self
}
}
box_pool!(P: S);
P.manage(unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
});
P.manage(unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
});
let first = P.alloc(S).ok().unwrap();
let _second = first.clone();
assert!(STRUCT_CLONE_WAS_CALLED.load(Ordering::Relaxed));
let is_oom = P.alloc(S).is_err();
assert!(is_oom);
}
#[allow(clippy::redundant_clone)]
#[test]
fn clone_panics_if_pool_exhausted() {
static STRUCT_CLONE_WAS_CALLED: AtomicBool = AtomicBool::new(false);
pub struct S;
impl Clone for S {
fn clone(&self) -> Self {
STRUCT_CLONE_WAS_CALLED.store(true, Ordering::Relaxed);
Self
}
}
box_pool!(P: S);
P.manage(unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
});
let first = P.alloc(S).ok().unwrap();
let thread = thread::spawn(move || {
let _second = first.clone();
});
let thread_panicked = thread.join().is_err();
assert!(thread_panicked);
// we diverge from `alloc::Box<T>` in that we call `T::clone` first and then request
// memory from the allocator whereas `alloc::Box<T>` does it the other way around
// assert!(!STRUCT_CLONE_WAS_CALLED.load(Ordering::Relaxed));
}
#[allow(clippy::redundant_clone)]
#[test]
fn panicking_clone_does_not_leak_memory() {
static STRUCT_CLONE_WAS_CALLED: AtomicBool = AtomicBool::new(false);
pub struct S;
impl Clone for S {
fn clone(&self) -> Self {
STRUCT_CLONE_WAS_CALLED.store(true, Ordering::Relaxed);
panic!()
}
}
box_pool!(P: S);
P.manage(unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
});
P.manage(unsafe {
static mut B: BoxBlock<S> = BoxBlock::new();
&mut B
});
let boxed = P.alloc(S).ok().unwrap();
let thread = thread::spawn(move || {
let _boxed = boxed.clone();
});
let thread_panicked = thread.join().is_err();
assert!(thread_panicked);
assert!(STRUCT_CLONE_WAS_CALLED.load(Ordering::Relaxed));
let once = P.alloc(S);
let twice = P.alloc(S);
assert!(once.is_ok());
assert!(twice.is_ok());
}
}