heapless/
mpmc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
//! A fixed capacity Multiple-Producer Multiple-Consumer (MPMC) lock-free queue
//!
//! NOTE: This module requires atomic CAS operations. On targets where they're not natively available,
//! they are emulated by the [`portable-atomic`](https://crates.io/crates/portable-atomic) crate.
//!
//! # Example
//!
//! This queue can be constructed in "const context". Placing it in a `static` variable lets *all*
//! contexts (interrupts / threads / `main`) safely enqueue and dequeue items from it.
//!
//! ``` ignore
//! #![no_main]
//! #![no_std]
//!
//! use panic_semihosting as _;
//!
//! use cortex_m::{asm, peripheral::syst::SystClkSource};
//! use cortex_m_rt::{entry, exception};
//! use cortex_m_semihosting::hprintln;
//! use heapless::mpmc::Q2;
//!
//! static Q: Q2<u8> = Q2::new();
//!
//! #[entry]
//! fn main() -> ! {
//!     if let Some(p) = cortex_m::Peripherals::take() {
//!         let mut syst = p.SYST;
//!
//!         // configures the system timer to trigger a SysTick exception every second
//!         syst.set_clock_source(SystClkSource::Core);
//!         syst.set_reload(12_000_000);
//!         syst.enable_counter();
//!         syst.enable_interrupt();
//!     }
//!
//!     loop {
//!         if let Some(x) = Q.dequeue() {
//!             hprintln!("{}", x).ok();
//!         } else {
//!             asm::wfi();
//!         }
//!     }
//! }
//!
//! #[exception]
//! fn SysTick() {
//!     static mut COUNT: u8 = 0;
//!
//!     Q.enqueue(*COUNT).ok();
//!     *COUNT += 1;
//! }
//! ```
//!
//! # Benchmark
//!
//! Measured on a ARM Cortex-M3 core running at 8 MHz and with zero Flash wait cycles
//!
//! N| `Q8::<u8>::enqueue().ok()` (`z`) | `Q8::<u8>::dequeue()` (`z`) |
//! -|----------------------------------|-----------------------------|
//! 0|34                                |35                           |
//! 1|52                                |53                           |
//! 2|69                                |71                           |
//!
//! - `N` denotes the number of *interruptions*. On Cortex-M, an interruption consists of an
//!   interrupt handler preempting the would-be atomic section of the `enqueue` / `dequeue`
//!   operation. Note that it does *not* matter if the higher priority handler uses the queue or
//!   not.
//! - All execution times are in clock cycles. 1 clock cycle = 125 ns.
//! - Execution time is *dependent* of `mem::size_of::<T>()`. Both operations include one
//! `memcpy(T)` in their successful path.
//! - The optimization level is indicated in parentheses.
//! - The numbers reported correspond to the successful path (i.e. `Some` is returned by `dequeue`
//! and `Ok` is returned by `enqueue`).
//!
//! # Portability
//!
//! This module requires CAS atomic instructions which are not available on all architectures
//! (e.g.  ARMv6-M (`thumbv6m-none-eabi`) and MSP430 (`msp430-none-elf`)). These atomics can be
//! emulated however with [`portable-atomic`](https://crates.io/crates/portable-atomic), which is
//! enabled with the `cas` feature and is enabled by default for `thumbv6m-none-eabi` and `riscv32`
//! targets.
//!
//! # References
//!
//! This is an implementation of Dmitry Vyukov's ["Bounded MPMC queue"][0] minus the cache padding.
//!
//! [0]: http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue

use core::{cell::UnsafeCell, mem::MaybeUninit};

#[cfg(not(feature = "portable-atomic"))]
use core::sync::atomic;
#[cfg(feature = "portable-atomic")]
use portable_atomic as atomic;

use atomic::Ordering;

#[cfg(feature = "mpmc_large")]
type AtomicTargetSize = atomic::AtomicUsize;
#[cfg(not(feature = "mpmc_large"))]
type AtomicTargetSize = atomic::AtomicU8;

#[cfg(feature = "mpmc_large")]
type IntSize = usize;
#[cfg(not(feature = "mpmc_large"))]
type IntSize = u8;

/// MPMC queue with a capability for 2 elements.
pub type Q2<T> = MpMcQueue<T, 2>;

/// MPMC queue with a capability for 4 elements.
pub type Q4<T> = MpMcQueue<T, 4>;

/// MPMC queue with a capability for 8 elements.
pub type Q8<T> = MpMcQueue<T, 8>;

/// MPMC queue with a capability for 16 elements.
pub type Q16<T> = MpMcQueue<T, 16>;

/// MPMC queue with a capability for 32 elements.
pub type Q32<T> = MpMcQueue<T, 32>;

/// MPMC queue with a capability for 64 elements.
pub type Q64<T> = MpMcQueue<T, 64>;

/// MPMC queue with a capacity for N elements
/// N must be a power of 2
/// The max value of N is u8::MAX - 1 if `mpmc_large` feature is not enabled.
pub struct MpMcQueue<T, const N: usize> {
    buffer: UnsafeCell<[Cell<T>; N]>,
    dequeue_pos: AtomicTargetSize,
    enqueue_pos: AtomicTargetSize,
}

impl<T, const N: usize> MpMcQueue<T, N> {
    const MASK: IntSize = (N - 1) as IntSize;
    const EMPTY_CELL: Cell<T> = Cell::new(0);

    const ASSERT: [(); 1] = [()];

    /// Creates an empty queue
    pub const fn new() -> Self {
        // Const assert
        crate::sealed::greater_than_1::<N>();
        crate::sealed::power_of_two::<N>();

        // Const assert on size.
        Self::ASSERT[!(N < (IntSize::MAX as usize)) as usize];

        let mut cell_count = 0;

        let mut result_cells: [Cell<T>; N] = [Self::EMPTY_CELL; N];
        while cell_count != N {
            result_cells[cell_count] = Cell::new(cell_count);
            cell_count += 1;
        }

        Self {
            buffer: UnsafeCell::new(result_cells),
            dequeue_pos: AtomicTargetSize::new(0),
            enqueue_pos: AtomicTargetSize::new(0),
        }
    }

    /// Returns the item in the front of the queue, or `None` if the queue is empty
    pub fn dequeue(&self) -> Option<T> {
        unsafe { dequeue(self.buffer.get() as *mut _, &self.dequeue_pos, Self::MASK) }
    }

    /// Adds an `item` to the end of the queue
    ///
    /// Returns back the `item` if the queue is full
    pub fn enqueue(&self, item: T) -> Result<(), T> {
        unsafe {
            enqueue(
                self.buffer.get() as *mut _,
                &self.enqueue_pos,
                Self::MASK,
                item,
            )
        }
    }
}

impl<T, const N: usize> Default for MpMcQueue<T, N> {
    fn default() -> Self {
        Self::new()
    }
}

unsafe impl<T, const N: usize> Sync for MpMcQueue<T, N> where T: Send {}

struct Cell<T> {
    data: MaybeUninit<T>,
    sequence: AtomicTargetSize,
}

impl<T> Cell<T> {
    const fn new(seq: usize) -> Self {
        Self {
            data: MaybeUninit::uninit(),
            sequence: AtomicTargetSize::new(seq as IntSize),
        }
    }
}

unsafe fn dequeue<T>(
    buffer: *mut Cell<T>,
    dequeue_pos: &AtomicTargetSize,
    mask: IntSize,
) -> Option<T> {
    let mut pos = dequeue_pos.load(Ordering::Relaxed);

    let mut cell;
    loop {
        cell = buffer.add(usize::from(pos & mask));
        let seq = (*cell).sequence.load(Ordering::Acquire);
        let dif = (seq as i8).wrapping_sub((pos.wrapping_add(1)) as i8);

        if dif == 0 {
            if dequeue_pos
                .compare_exchange_weak(
                    pos,
                    pos.wrapping_add(1),
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                )
                .is_ok()
            {
                break;
            }
        } else if dif < 0 {
            return None;
        } else {
            pos = dequeue_pos.load(Ordering::Relaxed);
        }
    }

    let data = (*cell).data.as_ptr().read();
    (*cell)
        .sequence
        .store(pos.wrapping_add(mask).wrapping_add(1), Ordering::Release);
    Some(data)
}

unsafe fn enqueue<T>(
    buffer: *mut Cell<T>,
    enqueue_pos: &AtomicTargetSize,
    mask: IntSize,
    item: T,
) -> Result<(), T> {
    let mut pos = enqueue_pos.load(Ordering::Relaxed);

    let mut cell;
    loop {
        cell = buffer.add(usize::from(pos & mask));
        let seq = (*cell).sequence.load(Ordering::Acquire);
        let dif = (seq as i8).wrapping_sub(pos as i8);

        if dif == 0 {
            if enqueue_pos
                .compare_exchange_weak(
                    pos,
                    pos.wrapping_add(1),
                    Ordering::Relaxed,
                    Ordering::Relaxed,
                )
                .is_ok()
            {
                break;
            }
        } else if dif < 0 {
            return Err(item);
        } else {
            pos = enqueue_pos.load(Ordering::Relaxed);
        }
    }

    (*cell).data.as_mut_ptr().write(item);
    (*cell)
        .sequence
        .store(pos.wrapping_add(1), Ordering::Release);
    Ok(())
}

#[cfg(test)]
mod tests {
    use super::Q2;

    #[test]
    fn sanity() {
        let q = Q2::new();
        q.enqueue(0).unwrap();
        q.enqueue(1).unwrap();
        assert!(q.enqueue(2).is_err());

        assert_eq!(q.dequeue(), Some(0));
        assert_eq!(q.dequeue(), Some(1));
        assert_eq!(q.dequeue(), None);
    }

    #[test]
    fn drain_at_pos255() {
        let q = Q2::new();
        for _ in 0..255 {
            assert!(q.enqueue(0).is_ok());
            assert_eq!(q.dequeue(), Some(0));
        }
        // this should not block forever
        assert_eq!(q.dequeue(), None);
    }

    #[test]
    fn full_at_wrapped_pos0() {
        let q = Q2::new();
        for _ in 0..254 {
            assert!(q.enqueue(0).is_ok());
            assert_eq!(q.dequeue(), Some(0));
        }
        assert!(q.enqueue(0).is_ok());
        assert!(q.enqueue(0).is_ok());
        // this should not block forever
        assert!(q.enqueue(0).is_err());
    }
}