heapless/binary_heap.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
//! A priority queue implemented with a binary heap.
//!
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
//! / smallest element is `O(1)`.
// TODO not yet implemented
// Converting a vector to a binary heap can be done in-place, and has `O(n)` complexity. A binary
// heap can also be converted to a sorted vector in-place, allowing it to be used for an `O(n log
// n)` in-place heapsort.
use core::{
cmp::Ordering,
fmt,
marker::PhantomData,
mem::{self, ManuallyDrop},
ops::{Deref, DerefMut},
ptr, slice,
};
use crate::vec::Vec;
/// Min-heap
pub enum Min {}
/// Max-heap
pub enum Max {}
/// The binary heap kind: min-heap or max-heap
pub trait Kind: private::Sealed {
#[doc(hidden)]
fn ordering() -> Ordering;
}
impl Kind for Min {
fn ordering() -> Ordering {
Ordering::Less
}
}
impl Kind for Max {
fn ordering() -> Ordering {
Ordering::Greater
}
}
/// Sealed traits
mod private {
pub trait Sealed {}
}
impl private::Sealed for Max {}
impl private::Sealed for Min {}
/// A priority queue implemented with a binary heap.
///
/// This can be either a min-heap or a max-heap.
///
/// It is a logic error for an item to be modified in such a way that the item's ordering relative
/// to any other item, as determined by the `Ord` trait, changes while it is in the heap. This is
/// normally only possible through `Cell`, `RefCell`, global state, I/O, or unsafe code.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
///
/// // We can use peek to look at the next item in the heap. In this case,
/// // there's no items in there yet so we get None.
/// assert_eq!(heap.peek(), None);
///
/// // Let's add some scores...
/// heap.push(1).unwrap();
/// heap.push(5).unwrap();
/// heap.push(2).unwrap();
///
/// // Now peek shows the most important item in the heap.
/// assert_eq!(heap.peek(), Some(&5));
///
/// // We can check the length of a heap.
/// assert_eq!(heap.len(), 3);
///
/// // We can iterate over the items in the heap, although they are returned in
/// // a random order.
/// for x in &heap {
/// println!("{}", x);
/// }
///
/// // If we instead pop these scores, they should come back in order.
/// assert_eq!(heap.pop(), Some(5));
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
///
/// // We can clear the heap of any remaining items.
/// heap.clear();
///
/// // The heap should now be empty.
/// assert!(heap.is_empty())
/// ```
pub struct BinaryHeap<T, K, const N: usize> {
pub(crate) _kind: PhantomData<K>,
pub(crate) data: Vec<T, N>,
}
impl<T, K, const N: usize> BinaryHeap<T, K, N> {
/* Constructors */
/// Creates an empty BinaryHeap as a $K-heap.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// // allocate the binary heap on the stack
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(4).unwrap();
///
/// // allocate the binary heap in a static variable
/// static mut HEAP: BinaryHeap<i32, Max, 8> = BinaryHeap::new();
/// ```
pub const fn new() -> Self {
Self {
_kind: PhantomData,
data: Vec::new(),
}
}
}
impl<T, K, const N: usize> BinaryHeap<T, K, N>
where
T: Ord,
K: Kind,
{
/* Public API */
/// Returns the capacity of the binary heap.
pub fn capacity(&self) -> usize {
self.data.capacity()
}
/// Drops all items from the binary heap.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(1).unwrap();
/// heap.push(3).unwrap();
///
/// assert!(!heap.is_empty());
///
/// heap.clear();
///
/// assert!(heap.is_empty());
/// ```
pub fn clear(&mut self) {
self.data.clear()
}
/// Returns the length of the binary heap.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(1).unwrap();
/// heap.push(3).unwrap();
///
/// assert_eq!(heap.len(), 2);
/// ```
pub fn len(&self) -> usize {
self.data.len()
}
/// Checks if the binary heap is empty.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
///
/// assert!(heap.is_empty());
///
/// heap.push(3).unwrap();
/// heap.push(5).unwrap();
/// heap.push(1).unwrap();
///
/// assert!(!heap.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Returns an iterator visiting all values in the underlying vector, in arbitrary order.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(1).unwrap();
/// heap.push(2).unwrap();
/// heap.push(3).unwrap();
/// heap.push(4).unwrap();
///
/// // Print 1, 2, 3, 4 in arbitrary order
/// for x in heap.iter() {
/// println!("{}", x);
///
/// }
/// ```
pub fn iter(&self) -> slice::Iter<'_, T> {
self.data.as_slice().iter()
}
/// Returns a mutable iterator visiting all values in the underlying vector, in arbitrary order.
///
/// **WARNING** Mutating the items in the binary heap can leave the heap in an inconsistent
/// state.
pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> {
self.data.as_mut_slice().iter_mut()
}
/// Returns the *top* (greatest if max-heap, smallest if min-heap) item in the binary heap, or
/// None if it is empty.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// assert_eq!(heap.peek(), None);
///
/// heap.push(1).unwrap();
/// heap.push(5).unwrap();
/// heap.push(2).unwrap();
/// assert_eq!(heap.peek(), Some(&5));
/// ```
pub fn peek(&self) -> Option<&T> {
self.data.as_slice().get(0)
}
/// Returns a mutable reference to the greatest item in the binary heap, or
/// `None` if it is empty.
///
/// Note: If the `PeekMut` value is leaked, the heap may be in an
/// inconsistent state.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// assert!(heap.peek_mut().is_none());
///
/// heap.push(1);
/// heap.push(5);
/// heap.push(2);
/// {
/// let mut val = heap.peek_mut().unwrap();
/// *val = 0;
/// }
///
/// assert_eq!(heap.peek(), Some(&2));
/// ```
pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, K, N>> {
if self.is_empty() {
None
} else {
Some(PeekMut {
heap: self,
sift: true,
})
}
}
/// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and
/// returns it, or None if it is empty.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(1).unwrap();
/// heap.push(3).unwrap();
///
/// assert_eq!(heap.pop(), Some(3));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
/// ```
pub fn pop(&mut self) -> Option<T> {
if self.is_empty() {
None
} else {
Some(unsafe { self.pop_unchecked() })
}
}
/// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and
/// returns it, without checking if the binary heap is empty.
pub unsafe fn pop_unchecked(&mut self) -> T {
let mut item = self.data.pop_unchecked();
if !self.is_empty() {
mem::swap(&mut item, self.data.as_mut_slice().get_unchecked_mut(0));
self.sift_down_to_bottom(0);
}
item
}
/// Pushes an item onto the binary heap.
///
/// ```
/// use heapless::binary_heap::{BinaryHeap, Max};
///
/// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new();
/// heap.push(3).unwrap();
/// heap.push(5).unwrap();
/// heap.push(1).unwrap();
///
/// assert_eq!(heap.len(), 3);
/// assert_eq!(heap.peek(), Some(&5));
/// ```
pub fn push(&mut self, item: T) -> Result<(), T> {
if self.data.is_full() {
return Err(item);
}
unsafe { self.push_unchecked(item) }
Ok(())
}
/// Pushes an item onto the binary heap without first checking if it's full.
pub unsafe fn push_unchecked(&mut self, item: T) {
let old_len = self.len();
self.data.push_unchecked(item);
self.sift_up(0, old_len);
}
/// Returns the underlying ```Vec<T,N>```. Order is arbitrary and time is O(1).
pub fn into_vec(self) -> Vec<T, N> {
self.data
}
/* Private API */
fn sift_down_to_bottom(&mut self, mut pos: usize) {
let end = self.len();
let start = pos;
unsafe {
let mut hole = Hole::new(self.data.as_mut_slice(), pos);
let mut child = 2 * pos + 1;
while child < end {
let right = child + 1;
// compare with the greater of the two children
if right < end && hole.get(child).cmp(hole.get(right)) != K::ordering() {
child = right;
}
hole.move_to(child);
child = 2 * hole.pos() + 1;
}
pos = hole.pos;
}
self.sift_up(start, pos);
}
fn sift_up(&mut self, start: usize, pos: usize) -> usize {
unsafe {
// Take out the value at `pos` and create a hole.
let mut hole = Hole::new(self.data.as_mut_slice(), pos);
while hole.pos() > start {
let parent = (hole.pos() - 1) / 2;
if hole.element().cmp(hole.get(parent)) != K::ordering() {
break;
}
hole.move_to(parent);
}
hole.pos()
}
}
}
/// Hole represents a hole in a slice i.e. an index without valid value
/// (because it was moved from or duplicated).
/// In drop, `Hole` will restore the slice by filling the hole
/// position with the value that was originally removed.
struct Hole<'a, T> {
data: &'a mut [T],
/// `elt` is always `Some` from new until drop.
elt: ManuallyDrop<T>,
pos: usize,
}
impl<'a, T> Hole<'a, T> {
/// Create a new Hole at index `pos`.
///
/// Unsafe because pos must be within the data slice.
#[inline]
unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
debug_assert!(pos < data.len());
let elt = ptr::read(data.get_unchecked(pos));
Hole {
data,
elt: ManuallyDrop::new(elt),
pos,
}
}
#[inline]
fn pos(&self) -> usize {
self.pos
}
/// Returns a reference to the element removed.
#[inline]
fn element(&self) -> &T {
&self.elt
}
/// Returns a reference to the element at `index`.
///
/// Unsafe because index must be within the data slice and not equal to pos.
#[inline]
unsafe fn get(&self, index: usize) -> &T {
debug_assert!(index != self.pos);
debug_assert!(index < self.data.len());
self.data.get_unchecked(index)
}
/// Move hole to new location
///
/// Unsafe because index must be within the data slice and not equal to pos.
#[inline]
unsafe fn move_to(&mut self, index: usize) {
debug_assert!(index != self.pos);
debug_assert!(index < self.data.len());
let ptr = self.data.as_mut_ptr();
let index_ptr: *const _ = ptr.add(index);
let hole_ptr = ptr.add(self.pos);
ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
self.pos = index;
}
}
/// Structure wrapping a mutable reference to the greatest item on a
/// `BinaryHeap`.
///
/// This `struct` is created by [`BinaryHeap::peek_mut`].
/// See its documentation for more.
pub struct PeekMut<'a, T, K, const N: usize>
where
T: Ord,
K: Kind,
{
heap: &'a mut BinaryHeap<T, K, N>,
sift: bool,
}
impl<T, K, const N: usize> Drop for PeekMut<'_, T, K, N>
where
T: Ord,
K: Kind,
{
fn drop(&mut self) {
if self.sift {
self.heap.sift_down_to_bottom(0);
}
}
}
impl<T, K, const N: usize> Deref for PeekMut<'_, T, K, N>
where
T: Ord,
K: Kind,
{
type Target = T;
fn deref(&self) -> &T {
debug_assert!(!self.heap.is_empty());
// SAFE: PeekMut is only instantiated for non-empty heaps
unsafe { self.heap.data.as_slice().get_unchecked(0) }
}
}
impl<T, K, const N: usize> DerefMut for PeekMut<'_, T, K, N>
where
T: Ord,
K: Kind,
{
fn deref_mut(&mut self) -> &mut T {
debug_assert!(!self.heap.is_empty());
// SAFE: PeekMut is only instantiated for non-empty heaps
unsafe { self.heap.data.as_mut_slice().get_unchecked_mut(0) }
}
}
impl<'a, T, K, const N: usize> PeekMut<'a, T, K, N>
where
T: Ord,
K: Kind,
{
/// Removes the peeked value from the heap and returns it.
pub fn pop(mut this: PeekMut<'a, T, K, N>) -> T {
let value = this.heap.pop().unwrap();
this.sift = false;
value
}
}
impl<'a, T> Drop for Hole<'a, T> {
#[inline]
fn drop(&mut self) {
// fill the hole again
unsafe {
let pos = self.pos;
ptr::write(self.data.get_unchecked_mut(pos), ptr::read(&*self.elt));
}
}
}
impl<T, K, const N: usize> Default for BinaryHeap<T, K, N>
where
T: Ord,
K: Kind,
{
fn default() -> Self {
Self::new()
}
}
impl<T, K, const N: usize> Clone for BinaryHeap<T, K, N>
where
K: Kind,
T: Ord + Clone,
{
fn clone(&self) -> Self {
Self {
_kind: self._kind,
data: self.data.clone(),
}
}
}
impl<T, K, const N: usize> fmt::Debug for BinaryHeap<T, K, N>
where
K: Kind,
T: Ord + fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
}
}
impl<'a, T, K, const N: usize> IntoIterator for &'a BinaryHeap<T, K, N>
where
K: Kind,
T: Ord,
{
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
#[cfg(test)]
mod tests {
use std::vec::Vec;
use crate::binary_heap::{BinaryHeap, Max, Min};
#[test]
fn static_new() {
static mut _B: BinaryHeap<i32, Min, 16> = BinaryHeap::new();
}
#[test]
fn drop() {
droppable!();
{
let mut v: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
v.pop().unwrap();
}
assert_eq!(Droppable::count(), 0);
{
let mut v: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
}
assert_eq!(Droppable::count(), 0);
{
let mut v: BinaryHeap<Droppable, Min, 2> = BinaryHeap::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
v.pop().unwrap();
}
assert_eq!(Droppable::count(), 0);
{
let mut v: BinaryHeap<Droppable, Min, 2> = BinaryHeap::new();
v.push(Droppable::new()).ok().unwrap();
v.push(Droppable::new()).ok().unwrap();
}
assert_eq!(Droppable::count(), 0);
}
#[test]
fn into_vec() {
droppable!();
let mut h: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new();
h.push(Droppable::new()).ok().unwrap();
h.push(Droppable::new()).ok().unwrap();
h.pop().unwrap();
assert_eq!(Droppable::count(), 1);
let v = h.into_vec();
assert_eq!(Droppable::count(), 1);
core::mem::drop(v);
assert_eq!(Droppable::count(), 0);
}
#[test]
fn min() {
let mut heap = BinaryHeap::<_, Min, 16>::new();
heap.push(1).unwrap();
heap.push(2).unwrap();
heap.push(3).unwrap();
heap.push(17).unwrap();
heap.push(19).unwrap();
heap.push(36).unwrap();
heap.push(7).unwrap();
heap.push(25).unwrap();
heap.push(100).unwrap();
assert_eq!(
heap.iter().cloned().collect::<Vec<_>>(),
[1, 2, 3, 17, 19, 36, 7, 25, 100]
);
assert_eq!(heap.pop(), Some(1));
assert_eq!(
heap.iter().cloned().collect::<Vec<_>>(),
[2, 17, 3, 25, 19, 36, 7, 100]
);
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(7));
assert_eq!(heap.pop(), Some(17));
assert_eq!(heap.pop(), Some(19));
assert_eq!(heap.pop(), Some(25));
assert_eq!(heap.pop(), Some(36));
assert_eq!(heap.pop(), Some(100));
assert_eq!(heap.pop(), None);
assert!(heap.peek_mut().is_none());
heap.push(1).unwrap();
heap.push(2).unwrap();
heap.push(10).unwrap();
{
let mut val = heap.peek_mut().unwrap();
*val = 7;
}
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(7));
assert_eq!(heap.pop(), Some(10));
assert_eq!(heap.pop(), None);
}
#[test]
fn max() {
let mut heap = BinaryHeap::<_, Max, 16>::new();
heap.push(1).unwrap();
heap.push(2).unwrap();
heap.push(3).unwrap();
heap.push(17).unwrap();
heap.push(19).unwrap();
heap.push(36).unwrap();
heap.push(7).unwrap();
heap.push(25).unwrap();
heap.push(100).unwrap();
assert_eq!(
heap.iter().cloned().collect::<Vec<_>>(),
[100, 36, 19, 25, 3, 2, 7, 1, 17]
);
assert_eq!(heap.pop(), Some(100));
assert_eq!(
heap.iter().cloned().collect::<Vec<_>>(),
[36, 25, 19, 17, 3, 2, 7, 1]
);
assert_eq!(heap.pop(), Some(36));
assert_eq!(heap.pop(), Some(25));
assert_eq!(heap.pop(), Some(19));
assert_eq!(heap.pop(), Some(17));
assert_eq!(heap.pop(), Some(7));
assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
assert!(heap.peek_mut().is_none());
heap.push(1).unwrap();
heap.push(9).unwrap();
heap.push(10).unwrap();
{
let mut val = heap.peek_mut().unwrap();
*val = 7;
}
assert_eq!(heap.pop(), Some(9));
assert_eq!(heap.pop(), Some(7));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);
}
}