embedded_graphics/
draw_target.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
use crate::{
    drawable::{self, Drawable},
    geometry::{Point, Size},
    image::{Image, ImageDimensions, IntoPixelIter},
    pixelcolor::PixelColor,
    primitives::{self, Primitive},
    style::{PrimitiveStyle, Styled},
};

/// Defines a display that can be used to render [`Drawable`] objects.
///
/// To to add embedded-graphics support to a display driver, `DrawTarget` must be implemented. Once
/// a `DrawTarget` is defined, it can be used to render [`Drawable`]s. Note that any iterator over
/// [`Pixel`]s can be drawn as [`Drawable`] is implemented for `Iterator<Item = Pixel<C:
/// PixelColor>>`. See the [`Drawable`] trait documentation for more details.
///
/// `DrawTarget` provides default implementations of methods to draw [`primitive`]s and clear the
/// display which delegate to [`DrawTarget::draw_iter`]. If the target display supports accelerated
/// drawing commands, these methods can be overridden with specialised implementations that take
/// advantage of the hardware to speed up drawing operations.
///
/// Note that some displays require a "flush" operation to write changes from a framebuffer to the
/// display. See docs associated with the chosen display driver for details on how to update the
/// display.
///
/// # Examples
///
/// ## Implement `DrawTarget` for an 8 bit grayscale display
///
/// This example uses an imaginary display that has a 64x64px framebuffer of 8 bit values that
/// is sent to the display over a (simplified) SPI interface.
///
/// ```rust
/// use core::convert::TryInto;
/// use embedded_graphics::{
///     drawable::Pixel,
///     egcircle,
///     geometry::Size,
///     pixelcolor::{Gray8, GrayColor},
///     prelude::*,
///     primitive_style, DrawTarget,
/// };
/// #
/// # struct SPI1;
/// #
/// # impl SPI1 {
/// #     pub fn send_bytes(&self, buf: &[u8]) -> Result<(), ()> {
/// #         Ok(())
/// #     }
/// # }
/// #
///
/// /// A fake 64px x 64px display where each pixel is stored as a single `u8`
/// struct ExampleDisplay {
///     framebuffer: [u8; 64 * 64],
///     iface: SPI1,
/// }
///
/// impl ExampleDisplay {
///     /// Send buffer to the display
///     pub fn flush(&self) -> Result<(), ()> {
///         self.iface.send_bytes(&self.framebuffer)
///     }
/// }
///
/// impl DrawTarget<Gray8> for ExampleDisplay {
///     type Error = core::convert::Infallible;
///
///     /// Draw a `Pixel` that has a color defined as `Gray8`.
///     fn draw_pixel(&mut self, pixel: Pixel<Gray8>) -> Result<(), Self::Error> {
///         let Pixel(coord, color) = pixel;
///
///         // Place an (x, y) pixel at the right index in the framebuffer. If the pixel coordinates
///         // are out of bounds (negative or greater than (63, 63)), this operation will be a
///         // noop.
///         if let Ok((x @ 0..=63, y @ 0..=63)) = coord.try_into() {
///             let index: u32 = x + y * 64;
///             self.framebuffer[index as usize] = color.luma();
///         }
///
///         Ok(())
///     }
///
///     fn size(&self) -> Size {
///         Size::new(64, 64)
///     }
/// }
///
/// let mut display = ExampleDisplay {
///     framebuffer: [0; 4096],
///     iface: SPI1,
/// };
///
/// // Draw a circle centered around `(32, 32)` with a radius of `10` and a white stroke
/// let circle = egcircle!(
///     center = (32, 32),
///     radius = 10,
///     style = primitive_style!(stroke_color = Gray8::WHITE, stroke_width = 1)
/// );
/// circle.draw(&mut display)?;
///
/// // Update the display
/// display.flush().expect("Failed to send data to display");
/// # Ok::<(), core::convert::Infallible>(())
/// ```
///
/// ## Hardware Acceleration
///
/// In addition to defining [`draw_pixel`], an implementation of [`DrawTarget`] can also provide
/// alternative implementations for hardware accelerated drawing operations. This example implements
/// `DrawTarget` for a display without a framebuffer that supports hardware accelerated drawing of
/// styled [`Rectangle`]s.
///
/// The default implementations of [`draw_rectangle`] as well as other shape drawing methods
/// ([`draw_circle`], etc) defer to [`draw_iter`] internally. In this example, the default
/// implementation of [`draw_rectangle`] is overridden to allow usage of accelerated draw commands
/// specific to the targeted hardware.
///
/// As this example doesn't use a framebuffer, a "flush" operation is not required. All draw
/// operations are performed in "immediate mode" directly on the display. As each drawing operation
/// requires communication with the display that may fail, a custom error type `CommError` is
/// introduced.
///
/// ```rust
/// # use embedded_graphics::prelude::*;
/// # use embedded_graphics::DrawTarget;
/// # use embedded_graphics::{egrectangle, primitive_style};
/// # use embedded_graphics::primitives::rectangle::Rectangle;
/// # use embedded_graphics::pixelcolor::{Gray8, GrayColor};
/// # use embedded_graphics::drawable::Pixel;
/// # use embedded_graphics::style::{PrimitiveStyle, Styled};
/// # use core::convert::TryFrom;
/// #
/// # struct SPI1;
/// #
/// # impl SPI1 {
/// #     pub fn send_bytes(&self, buf: &[u8]) -> Result<(), ()> {
/// #         Ok(())
/// #     }
/// # }
/// #
/// /// SPI communication error
/// #[derive(Debug)]
/// struct CommError;
///
/// /// A fake display which uses hardware drawing commands instead of a framebuffer
/// struct FastExampleDisplay {
///     iface: SPI1,
/// }
///
/// impl FastExampleDisplay {
///     /// Draw a rectangle using hardware accelerated commands
///     pub fn fast_rectangle(
///         &self,
///         rect: &Styled<Rectangle, PrimitiveStyle<Gray8>>,
///     ) -> Result<(), CommError> {
///         // Send rectangle drawing commands to the display
///
///         Ok(())
///     }
/// }
///
/// impl DrawTarget<Gray8> for FastExampleDisplay {
///     type Error = CommError;
///
///     /// Draw a `pixel` that has a color defined as `Gray8`
///     fn draw_pixel(&mut self, pixel: Pixel<Gray8>) -> Result<(), Self::Error> {
///         let Pixel(coord, color) = pixel;
///
///         // Send commands directly to the display to set an individual pixel to the given color
///
///         Ok(())
///     }
///
///     fn size(&self) -> Size {
///         Size::new(64, 64)
///     }
///
///     /// Use the accelerated method when drawing rectangles
///     ///
///     /// This method overrides the default implementation. If `fast_rectangle()` fails, the error
///     /// will be propagated through this method.
///     fn draw_rectangle(
///         &mut self,
///         item: &Styled<Rectangle, PrimitiveStyle<Gray8>>,
///     ) -> Result<(), Self::Error> {
///         self.fast_rectangle(item)
///     }
/// }
///
/// let mut display = FastExampleDisplay { iface: SPI1 };
///
/// // Draw a rectangle from (10, 20) to (30, 40) with a white stroke
/// let rect = egrectangle!(
///     top_left = (10, 20),
///     bottom_right = (30, 40),
///     style = primitive_style!(stroke_color = Gray8::WHITE, stroke_width = 1)
/// )
/// .draw(&mut display)?;
///
/// // Draw a rectangle on the display using accelerated `draw_rectangle()` function
/// # Ok::<(), CommError>(())
/// ```
///
/// [`Drawable`]: ../drawable/trait.Drawable.html
/// [`Pixel`]: ../drawable/struct.Pixel.html
/// [`draw_pixel`]: ./trait.DrawTarget.html#method.draw_pixel
/// [`DrawTarget::draw_iter`]: ./trait.DrawTarget.html#method.draw_iter
/// [`DrawTarget`]: ./trait.DrawTarget.html
/// [`Rectangle`]: ../primitives/rectangle/struct.Rectangle.html
/// [`primitive`]: ../primitives/index.html
/// [`draw_rectangle`]: ./trait.DrawTarget.html#method.draw_rectangle
/// [`draw_circle`]: ./trait.DrawTarget.html#method.draw_circle
/// [`draw_iter`]: ./trait.DrawTarget.html#method.draw_iter
pub trait DrawTarget<C>
where
    C: PixelColor,
{
    /// Error type to return when a drawing operation fails.
    ///
    /// This error is returned if an error occurred during a drawing operation. This mainly applies
    /// to drivers that need to communicate with the display for each drawing operation, where a
    /// communication error can occur. For drivers that use an internal framebuffer where drawing
    /// operations can never fail, [`core::convert::Infallible`] can instead be used as the `Error`
    /// type.
    ///
    /// [`core::convert::Infallible`]: https://doc.rust-lang.org/stable/core/convert/enum.Infallible.html
    type Error;

    /// Draws a pixel on the display.
    fn draw_pixel(&mut self, item: drawable::Pixel<C>) -> Result<(), Self::Error>;

    /// Draws an object from an iterator over its pixels.
    fn draw_iter<T>(&mut self, item: T) -> Result<(), Self::Error>
    where
        T: IntoIterator<Item = drawable::Pixel<C>>,
    {
        for pixel in item {
            self.draw_pixel(pixel)?;
        }

        Ok(())
    }

    /// Returns the dimensions of the `DrawTarget` in pixels.
    fn size(&self) -> Size;

    /// Clears the display with the supplied color.
    ///
    /// This default implementation can be replaced if the implementing driver provides an
    /// accelerated clearing method.
    fn clear(&mut self, color: C) -> Result<(), Self::Error>
    where
        Self: Sized,
    {
        primitives::Rectangle::new(Point::zero(), Point::zero() + self.size())
            .into_styled(PrimitiveStyle::with_fill(color))
            .draw(self)
    }

    /// Draws a styled line primitive.
    ///
    /// This default trait method can be overridden if a display provides hardware-accelerated
    /// methods for drawing lines.
    ///
    /// # Caution
    ///
    /// This method should not be called directly from application code. It is used to define the
    /// internals of the [`draw`] method used for the [`Styled`] [`Line`] primitive. To draw a line,
    /// call [`draw`] on a `Styled<Line>` object.
    ///
    /// [`Line`]: ../primitives/line/struct.Line.html
    /// [`draw`]: ./trait.DrawTarget.html#method.draw
    /// [`Styled`]: ../style/struct.Styled.html
    fn draw_line(
        &mut self,
        item: &Styled<primitives::Line, PrimitiveStyle<C>>,
    ) -> Result<(), Self::Error> {
        self.draw_iter(item)
    }

    /// Draws a styled triangle primitive.
    ///
    /// This default trait method can be overridden if a display provides hardware-accelerated
    /// methods for drawing triangles.
    ///
    /// # Caution
    ///
    /// This method should not be called directly from application code. It is used to define the
    /// internals of the [`draw`] method used for the [`Styled`] [`Triangle`] primitive. To draw a
    /// triangle, call [`draw`] on a `Styled<Triangle>` object.
    ///
    /// [`Triangle`]: ../primitives/triangle/struct.Triangle.html
    /// [`draw`]: ./trait.DrawTarget.html#method.draw
    /// [`Styled`]: ../style/struct.Styled.html
    fn draw_triangle(
        &mut self,
        item: &Styled<primitives::Triangle, PrimitiveStyle<C>>,
    ) -> Result<(), Self::Error> {
        self.draw_iter(item)
    }

    /// Draws a styled rectangle primitive.
    ///
    /// This default trait method can be overridden if a display provides hardware-accelerated
    /// methods for drawing rectangle.
    ///
    /// # Caution
    ///
    /// This method should not be called directly from application code. It is used to define the
    /// internals of the [`draw`] method used for the [`Styled`] [`Rectangle`] primitive. To draw a
    /// rectangle, call [`draw`] on a `Styled<Rectangle>` object.
    ///
    /// [`Rectangle`]: ../primitives/rectangle/struct.Rectangle.html
    /// [`draw`]: ./trait.DrawTarget.html#method.draw
    /// [`Styled`]: ../style/struct.Styled.html
    fn draw_rectangle(
        &mut self,
        item: &Styled<primitives::Rectangle, PrimitiveStyle<C>>,
    ) -> Result<(), Self::Error> {
        self.draw_iter(item)
    }

    /// Draws a styled circle primitive.
    ///
    /// This default trait method can be overridden if a display provides hardware-accelerated
    /// methods for drawing circles.
    ///
    /// # Caution
    ///
    /// This method should not be called directly from application code. It is used to define the
    /// internals of the [`draw`] method used for the [`Styled`] [`Circle`] primitive. To draw a
    /// circle, call [`draw`] on a `Styled<Circle>` object.
    ///
    /// [`Circle`]: ../primitives/circle/struct.Circle.html
    /// [`draw`]: ./trait.DrawTarget.html#method.draw
    /// [`Styled`]: ../style/struct.Styled.html
    fn draw_circle(
        &mut self,
        item: &Styled<primitives::Circle, PrimitiveStyle<C>>,
    ) -> Result<(), Self::Error> {
        self.draw_iter(item)
    }

    /// Draws an image with known size
    ///
    /// This default trait method can be overridden if a display provides hardware-accelerated
    /// methods for drawing an image with known size.
    ///
    /// # Caution
    ///
    /// This method should not be called directly from application code. It is used to define the
    /// internals of the [`draw`] method used for the [`Image`] primitive. To draw an
    /// image, call [`draw`] on a `Image` object.
    ///
    /// [`Image`]: ../image/struct.Image.html
    /// [`draw`]: ./trait.DrawTarget.html#method.draw
    fn draw_image<'a, 'b, I>(&mut self, item: &'a Image<'b, I, C>) -> Result<(), Self::Error>
    where
        &'b I: IntoPixelIter<C>,
        I: ImageDimensions,
        C: PixelColor + From<<C as PixelColor>::Raw>,
    {
        self.draw_iter(item.into_iter())
    }
}